Stabilization of melon cloudy juice with biopolymer agar

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210503

Keywords:

cloud melon juice, fruit pulp, agar, stabilization, aggregation, sediment, flocculation

Abstract

In the production of natural fruit juices, the uniform distribution of fruit pulp particles in the volume is of great importance, which determines the aggregate stability of the system. To maintain the aggregate stability of fruit juices, stabilizers are used, which are polymers or surfactants. In this regard, the influence of natural polymer agar on the stability of melon juice containing particles of melon pulp has been studied. The initial melon juice had a pH of 5.78 and a titrated acidity of 970.29 mg of citric acid/L, the content of soluble solids in it corresponded to 10.08 TSS Brix. Samples of melon juice with concentrations of 50, 70 and 90 % were used for research. The study of the stability of melon juice in the presence of agar was carried out for 6 days on the Turbiscan device (France). It is shown that at concentrations of agar introduced into melon juice of 0.005 % and 0.01 %, the system retains its aggregate stability, but when switching to a concentration of 0.02 %, the stability of the system decreases. The size of melon pulp particles changes accordingly. If the addition of agar concentration of 0.05 % and 0.01 % to the melon pulp reduces the particle size of the melon pulp, then an increase in the agar concentration to 0.02 % causes a certain increase in the particle size of the fruit pulp. This effect of agar concentration on the aggregate stability of melon juice is explained by the fact that at low concentrations, polymer macromolecules, covering the surface of melon pulp particles, protect them from sticking. When the polymer concentration increases, melon pulp particles begin to stick together due to the coupling of loops and tails of agar macromolecules adsorbed on their surface

Supporting Agencies

  • This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan
  • Project No АР05132126.

Author Biographies

Sagdat Mederbekovna Tazhibayeva, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Kazakhstan, 050040

Doctor of Chemical Sciences, Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Faculty of Chemistry and Chemical Technology

Bakyt Baimuratovna Tyussyupova, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Kazakhstan, 050040

Candidate of Chemical Sciences, Associate Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Faculty of Chemistry and Chemical Technology

Inabat Kuanyshevna Khamitova, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Kazakhstan, 050040

Master

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Faculty of Chemistry and Chemical Technology

Zhexenbek Toktarbay, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Kazakhstan, 050040

PhD, Doctor of Philosophy in Chemistry

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Faculty of Chemistry and Chemical Technology

Kuanyshbek Bituovich Musabekov, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Kazakhstan, 050040

Doctor of Chemical Sciences, Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Faculty of Chemistry and Chemical Technology

Gulnur Tleuhanovna Daribayeva, Almaty Technological University Tole bi str., 100, Almaty, Kazakhstan, 050061

PhD, Doctor of Philosophy "Technology of Processing Industries"

Department Technology of Bread Products and Processing Industries

References

  1. Morais, D. R., Rotta, E. M., Sargi, S. C., Bonafe, E. G., Suzuki, R. M., Souza, N. E. et. al. (2016). Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. Journal of the Brazilian Chemical Society. doi: https://doi.org/10.5935/0103-5053.20160178
  2. Da Silva, A. C., Jorge, N. (2014). Bioactive compounds of the lipid fractions of agro-industrial waste. Food Research International, 66, 493–500. doi: https://doi.org/10.1016/j.foodres.2014.10.025
  3. Sabino, L. B. S., Gonzaga, M. L. C., Soares, D. J., Lima, A. C. S., Lima, J. S. S., Almeida, M. M. B. et. al. (2015). Bioactive compounds, antioxidant activity, and minerals in flours prepared with tropical fruit peels. Acta Alimentaria, 44 (4), 520–526. doi: https://doi.org/10.1556/066.2015.44.0023
  4. Krentz, A. J., Bailey, C. J. (2005). Oral Antidiabetic Agents. Drugs, 65 (3), 385–411. doi: https://doi.org/10.2165/00003495-200565030-00005
  5. Foster, G. D., Wyatt, H. R., Hill, J. O. (2003). A randomized trial of a low-carbohydrate diet for obesity. ACC Current Journal Review, 12 (4), 29. doi: https://doi.org/10.1016/s1062-1458(03)00265-4
  6. Carbonell, J. V., Tárrega, A., Gurrea, M. C., Sentandreu, E. (2011). Chilled orange juices stabilized by centrifugation and differential heat treatments applied to low pulp and pulpy fractions. Innovative Food Science & Emerging Technologies, 12 (3), 315–319. doi: https://doi.org/10.1016/j.ifset.2011.04.009
  7. Aghajanzadeh, S., Kashaninejad, M., Ziaiifar, A. M. (2017). Cloud stability of sour orange juice as affected by pectin methylesterase during come up time: Approached through fractal dimension. International Journal of Food Properties, 20 (sup3), S2508–S2519. doi: https://doi.org/10.1080/10942912.2017.1373124
  8. Fasolin, L. H., Cunha, R. L. da. (2012). Soursop juice stabilized with soy fractions: a rheologial approach. Food Science and Technology, 32 (3), 558–567. doi: https://doi.org/10.1590/s0101-20612012005000072
  9. Domingues, R. C. C., Faria Junior, S. B., Silva, R. B., Cardoso, V. L., Reis, M. H. M. (2012). Clarification of passion fruit juice with chitosan: Effects of coagulation process variables and comparison with centrifugation and enzymatic treatments. Process Biochemistry, 47 (3), 467–471. doi: https://doi.org/10.1016/j.procbio.2011.12.002
  10. Ribeiro, H. L., Oliveira, A. V. de, Brito, E. S. de, Ribeiro, P. R. V., Souza Filho, M. de sá M., Azeredo, H. M. C. (2018). Stabilizing effect of montmorillonite on acerola juice anthocyanins. Food Chemistry, 245, 966–973. doi: https://doi.org/10.1016/j.foodchem.2017.11.076
  11. Zhu, D., Kou, C., Wei, L., Xi, P., Changxin, L., Cao, X., Liu, H. (2019). Effects of high pressure homogenization on the stability of cloudy apple juice. IOP Conference Series: Earth and Environmental Science, 358, 022059. doi: https://doi.org/10.1088/1755-1315/358/2/022059
  12. Wan, Y.-J., Xu, M.-M., Gilbert, R. G., Yin, J.-Y., Huang, X.-J., Xiong, T., Xie, M.-Y. (2019). Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids, 89, 623–630. doi: https://doi.org/10.1016/j.foodhyd.2018.11.017
  13. Dahdouh, L., Wisniewski, C., Kapitan-Gnimdu, A., Servent, A., Dornier, M., Delalonde, M. (2015). Identification of relevant physicochemical characteristics for predicting fruit juices filterability. Separation and Purification Technology, 141, 59–67. doi: https://doi.org/10.1016/j.seppur.2014.11.030
  14. Ashurst, P. R. (Ed.) (2016). Chemistry and technology of soft drinks and fruit juices. John Wiley & Sons, Ltd. doi: https://doi.org/10.1002/9781118634943
  15. Bennett, L. E., Sudharmarajan, S., De Silva, K. J., Barnett, J. L., Johnson, M. A., Stockmann, R., Smithers, G. W. (2009). Use of the Turbiscan for Measuring Foam Stability Properties of Food Ingredients. © Formulaction 2009 - 10 impasse bordebasse 31240 L'Union France - Application Note. Available at: https://www.formulaction.com/
  16. Mengual, O., Meunier, G., Cayre, I., Puech, K., Snabre, P. (1999). Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152 (1-2), 111–123. doi: https://doi.org/10.1016/s0927-7757(98)00680-3
  17. Celia, C., Trapasso, E., Cosco, D., Paolino, D., Fresta, M. (2009). Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids and Surfaces B: Biointerfaces, 72 (1), 155–160. doi: https://doi.org/10.1016/j.colsurfb.2009.03.007
  18. Fundo, J. F., Miller, F. A., Mandro, G. F., Tremarin, A., Brandão, T. R. S., Silva, C. L. M. (2019). UV-C light processing of Cantaloupe melon juice: Evaluation of the impact on microbiological, and some quality characteristics, during refrigerated storage. LWT, 103, 247–252. doi: https://doi.org/10.1016/j.lwt.2019.01.025
  19. Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., Dhuique-Mayer, C. (2005). Clarification and concentration of melon juice using membrane processes. Innovative Food Science & Emerging Technologies, 6 (2), 213–220. doi: https://doi.org/10.1016/j.ifset.2004.11.004
  20. Reddy, A., Norris, D. F., Momeni, S. S., Waldo, B., Ruby, J. D. (2016). The pH of beverages in the United States. The Journal of the American Dental Association, 147 (4), 255–263. doi: https://doi.org/10.1016/j.adaj.2015.10.019
  21. Ellis, A. L., Norton, A. B., Mills, T. B., Norton, I. T. (2017). Stabilisation of foams by agar gel particles. Food Hydrocolloids, 73, 222–228. doi: https://doi.org/10.1016/j.foodhyd.2017.06.038

Downloads

Published

2020-08-31

How to Cite

Tazhibayeva, S. M., Tyussyupova, B. B., Khamitova, I. K., Toktarbay, Z., Musabekov, K. B., & Daribayeva, G. T. (2020). Stabilization of melon cloudy juice with biopolymer agar. Eastern-European Journal of Enterprise Technologies, 4(11 (106), 31–38. https://doi.org/10.15587/1729-4061.2020.210503

Issue

Section

Technology and Equipment of Food Production