Development of Fe-11Al-xMN alloy steel on cryogenic temperatures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.243236

Keywords:

Fe-11Al-Mn, Microstructure, Mechanical characteristics, Impact, Corrosion resistance, Cryogenic temperature

Abstract

This research is focused on increasing the reliability of Fe-11Al-Mn by combining the properties of Mn and the superiority of Fe-Al-C under cryogenic temperature. Three Fe-11Al-Mn alloys with compositions of 15 wt % Mn (F15), 20 wt % Mn (F20), and 25 wt % Mn (F25) were investigated. The cryogenic process uses liquid nitrogen in a temperature range of 0–196 °C. Hardness testing using the Vickers method and SEM was used to analyze the microstructure. X-ray diffraction (XRD) testing was conducted to ensure the Fe-11Al-Mn alloy phase and corrosion testing was carried out using the three-electrode cell polarization method. With the addition of Mn, the Vickers hardness of the Fe-11Al-Mn alloy decreased from 331.50 VHN at 15 wt % to 297.91 VHN at 25 wt %. The value of tensile strength and fracture elongation values were 742.21 MPa, 35.3 % EI; 789.03 MPa, 41.2 % EI; and 894.42 MPa, 50.2 % EI, for F15, F20, and F25, respectively. An important factor for improving the performance of cryogenic materials is the impact mechanism. The resulting impact toughness increased by 2.85 J/mm2 to 3.30 J/mm2 for F.15 and F25, respectively. The addition of the element Mn increases the corrosion resistance of the Fe-11Al-Mn alloy. The lowest corrosion rate occurs at 25 % wt Mn to 0.016 mm/year. Based on the results, the F25 alloy has the highest mechanical and corrosion resistance of the three types of alloys equivalent to SS 304 stainless steel. The microstructure of Fe-11Al-Mn alloy was similar between before and after cryogenic temperature treatment, this condition showed that the microstructure did not change during the process. From the overall results, the Fa-11Al-Mn alloy is a promising candidate for material applications working at cryogenic temperatures by optimizing the Mn content

Author Biographies

Ratna Kartikasari, Institut Teknologi Nasional Yogyakarta

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Adi Subardi, Institut Teknologi Nasional Yogyakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Andy Erwin Wijaya, Institut Teknologi Nasional Yogyakarta

Doctor of Mines Engineering, Assistance Professor

Department of Mines Engineering

References

  1. Qiu, Y., Yang, H., Tong, L., Wang, L. (2021). Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals, 11 (7), 1101. doi: https://doi.org/10.3390/met11071101
  2. Gao, L., Yang, L., Qian, S., Tang, Z., Qin, F., Wei, Q. et. al. (2016). Cryosurgery would be An Effective Option for Clinically Localized Prostate Cancer: A Meta-analysis and Systematic Review. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep27490
  3. Tjong, S. C. (1986). Stress corrosion cracking behaviour of the duplex Fe-10Al-29Mn-0.4C alloy in 20% NaCl solution at 100° C. Journal of Materials Science, 21 (4), 1166–1170. doi: https://doi.org/10.1007/bf00553248
  4. Kartikasari, R., Subardi, A., Wijaya, A. E. (2021). Development of Fe-5Al-1C alloys for grinding ball. Eastern-European Journal of Enterprise Technologies, 1 (12 (109)), 29–35. doi: https://doi.org/10.15587/1729-4061.2021.225421
  5. Shackelford, J. K. (1992). Introduction to Material Science for Engineers. New York: McMillan Publishing Company.
  6. Zimmer, J. M., Bailey, W. D. (2006). Pat. No. US4865662A. Aluminum-manganese-iron stainless steel alloy. No. 164,055; declareted: 03.03.1988; published: 12.09.1989. Available at: https://patentimages.storage.googleapis.com/7b/f1/c8/d968e628ccaeeb/US4865662.pdf
  7. Frommeyer, G., Drewes, E. J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Revue de Métallurgie, 97 (10), 1245–1253. doi: https://doi.org/10.1051/metal:2000110
  8. Baligidad, R. G., Prasad, V. V. S., Rao, A. S. (2007). Effect of Ti, W, Mn, Mo and Si on microstructure and mechanical properties of high carbon Fe–10•5 wt-%Al alloy. Materials Science and Technology, 23 (5), 613–619. doi: https://doi.org/10.1179/174328407x158631
  9. Heo, Y.-U., Song, Y.-Y., Park, S.-J., Bhadeshia, H. K. D. H., Suh, D.-W. (2012). Influence of Silicon in Low Density Fe-C-Mn-Al Steel. Metallurgical and Materials Transactions A, 43 (6), 1731–1735. doi: https://doi.org/10.1007/s11661-012-1149-x
  10. Kim, H., Suh, D.-W., Kim, N. J. (2013). Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Science and Technology of Advanced Materials, 14 (1), 014205. doi: https://doi.org/10.1088/1468-6996/14/1/014205
  11. Charles, J., Berghezan, A. (1981). Nickel-free austenitic steels for cryogenic applications: The Fe-23% Mn-5% Al-0.2% C alloys. Cryogenics, 21 (5), 278–280. doi: https://doi.org/10.1016/0011-2275(81)90003-5
  12. Charles, J., Berghezan, A., Lutts, A. (1984). High manganese - aluminum austenitic steels for cryogenic applications, some mechanical and physical properties. Le Journal de Physique Colloques, 45 (C1), C1-619–C1-623. doi: https://doi.org/10.1051/jphyscol:19841126
  13. Kim, Y. G., Park, Y. S., Han, J. K. (1985). Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-C-X alloys. Metallurgical Transactions A, 16 (9), 1689–1693. doi: https://doi.org/10.1007/bf02663026
  14. Sohn, S. S., Hong, S., Lee, J., Suh, B.-C., Kim, S.-K., Lee, B.-J. et. al. (2015). Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Materialia, 100, 39–52. doi: https://doi.org/10.1016/j.actamat.2015.08.027
  15. Yan, N., Di, H., Misra, R. D. K., Huang, H., Li, Y. (2019). Enhancing austenite stability in a new medium-Mn steel by combining deep cryogenic treatment and intercritical annealing: An experimental and theoretical study. Materials Science and Engineering: A, 753, 11–21. doi: https://doi.org/10.1016/j.msea.2019.01.026
  16. Zhirafar, S., Rezaeian, A., Pugh, M. (2007). Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology, 186 (1-3), 298–303. doi: https://doi.org/10.1016/j.jmatprotec.2006.12.046
  17. Kim, H., Ha, Y., Kwon, K. H., Kang, M., Kim, N. J., Lee, S. (2015). Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C–(22–26)Mn steels. Acta Materialia, 87, 332–343. doi: https://doi.org/10.1016/j.actamat.2014.11.027
  18. Czarkowski, P., Krawczyńska, A. T., Brynk, T., Nowacki, M., Lewandowska, M., Kurzydłowski, K. J. (2014). Cryogenic strength and microstructure of a hydrostatically extruded austenitic steel 1.4429 (AISI 316LN). Cryogenics, 64, 1–4. doi: https://doi.org/10.1016/j.cryogenics.2014.07.014
  19. Koyama, M., Lee, T., Lee, C. S., Tsuzaki, K. (2013). Grain refinement effect on cryogenic tensile ductility in a Fe–Mn–C twinning-induced plasticity steel. Materials & Design, 49, 234–241. doi: https://doi.org/10.1016/j.matdes.2013.01.061
  20. Ren, J., Chen, Q., Chen, J., Liu, Z. (2020). Enhancing strength and cryogenic toughness of high manganese TWIP steel plate by double strengthened structure design. Materials Science and Engineering: A, 786, 139397. doi: https://doi.org/10.1016/j.msea.2020.139397
  21. Koga, N., Nameki, T., Umezawa, O., Tschan, V., Weiss, K.-P. (2021). Tensile properties and deformation behavior of ferrite and austenite duplex stainless steel at cryogenic temperatures. Materials Science and Engineering: A, 801, 140442. doi: https://doi.org/10.1016/j.msea.2020.140442
  22. Nadig, D. S., Bhat, M. R., Pavan, V. K., Mahishi, C. (2017). Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6). IOP Conference Series: Materials Science and Engineering, 229, 012014. doi: https://doi.org/10.1088/1757-899x/229/1/012014
  23. Kim, J.-S., Jeon, J. B., Jung, J. E., Um, K.-K., Chang, Y. W. (2014). Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12 Mn steel at cryogenic temperatures. Metals and Materials International, 20 (1), 41–47. doi: https://doi.org/10.1007/s12540-014-1010-4
  24. Baligidad, R. G., Prasad, K. S. (2007). Effect of Al and C on structure and mechanical properties of Fe–Al–C alloys. Materials Science and Technology, 23 (1), 38–44. doi: https://doi.org/10.1179/174328407x158389
  25. Honeycombe, R., W. K., Bhadeshia, H. K. D. (1995). Steels: microstructure and properties. London: Edward Arnold. Available at: https://www.worldcat.org/title/steels-microstructure-and-properties/oclc/33045504
  26. Zuazo, I., Brechet, Y. (2009). Microstructure Evolution in Fe-Al-Mn-C lightweight alloys. Laboratory of Science and Engineering of Materials and Processes (SIMAP). Grenoble Institute of Technology (INGP).
  27. Rigaud, V., Daloz, D., Drillet, J., Perlade, A., Maugis, P., Lesoult, G. (2007). Phases Equilibrium Study in Quaternary Iron-rich Fe-Al-Mn-C Alloys. ISIJ International, 47 (6), 898–906. doi: https://doi.org/10.2355/isijinternational.47.898
  28. Leslie, W. C., Hornbogen, E. (1996). Physical metallurgy of steels. Physical Metallurgy, 1555–1620. doi: https://doi.org/10.1016/b978-044489875-3/50022-3
  29. Huang, B. X., Wang, X. D., Rong, Y. H., Wang, L., Jin, L. (2006). Mechanical behavior and martensitic transformation of an Fe–Mn–Si–Al–Nb alloy. Materials Science and Engineering: A, 438-440, 306–311. doi: https://doi.org/10.1016/j.msea.2006.02.150

Downloads

Published

2021-10-31

How to Cite

Kartikasari, R., Subardi, A., & Wijaya, A. E. (2021). Development of Fe-11Al-xMN alloy steel on cryogenic temperatures. Eastern-European Journal of Enterprise Technologies, 5(12(113), 60–68. https://doi.org/10.15587/1729-4061.2021.243236

Issue

Section

Materials Science