# The problem of hydraulic calculation of pressure distribution pipelines

## Authors

• Volodymyr Cherniuk The John Paul II Catholic University of Lublin, Poland
• Roman Hnativ Lviv Polytechnic National University, Ukraine
• Oleksandr Kravchuk Kyiv National University of Construction and Architecture, Ukraine
• Vadym Orel Lviv Polytechnic National University, Ukraine
• Iryna Bihun Lviv Polytechnic National University, Ukraine
• Matvii Cherniuk Lviv Polytechnic National University, Ukraine

## Keywords:

pressure distribution pipeline, pressure flow of liquid with variable travel flow

## Abstract

Most production technologies require a uniform flow path of liquid from pressure distribution pipelines. To achieve this goal, it is proposed to introduce polymer additives into the liquid flow or to use converging distribution pipelines with a continuous longitudinal slot in the wall. To reduce the uneven operation of the distribution pipeline during discrete liquid dispensing, it is proposed to use cylindrical output rotary nozzles with a lateral orthogonal entry of the jet into the nozzle. The problem is the lack of methods for accurate hydraulic calculation of the operation of distribution pipelines. Adequate calculation methods are based on differential equations.

Finding the exact solution of the differential equation of fluid motion with variable path flow rate for perforated distribution pipelines is urgent, because it still does not exist. The available calculation methods take into account only the right angles of separation of the jets from the flow in the distribution pipeline. These methods are based on the assumption that the coefficient of hydraulic friction and the coefficient of resistance of the outlets are constant along the flow. A calculation method is proposed that takes into account the change in the values of these resistance coefficients along the distribution pipeline. The kinematic and physical characteristics of the flow outside the distribution pipeline are also taken into account. The accuracy of calculating the value of the flow rate of water distributed from the distribution pipeline has been experimentally verified. The error in calculating the water consumption by the method assuming that the values of the resistance coefficients are unchanged along the distribution pipeline reaches 18.75 %. According to the proposed calculation method, this error does not exceed 6.25 %. However, both methods are suitable for the design of pressure distribution pipelines, provided that the jet separation angles are straight.

Taking into account the change from 90° to 360° of the angle of separation of the jets from the flow in the distribution pipeline will expand the scope and accuracy of calculation methods.

## Author Biographies

### Volodymyr Cherniuk, The John Paul II Catholic University of Lublin

Doctor of Technical Sciences, Professor

Department of Environmental Engineering

Institute of Environmental Engineering

### Roman Hnativ, Lviv Polytechnic National University

Doctor of Technical Sciences, Associate Professor

Department of Hydraulic and Water Engineering

### Oleksandr Kravchuk, Kyiv National University of Construction and Architecture

PhD, Associate Professor

Department of Water Supply and Drainage

### Vadym Orel, Lviv Polytechnic National University

PhD, Associate Professor

Department of Hydraulic and Water Engineering

### Iryna Bihun, Lviv Polytechnic National University

Department of Heat and Gas Supply and Ventilation

### Matvii Cherniuk, Lviv Polytechnic National University

Department of Electronic Devices

Institute of Telecommunications, Radioelectronics and Electronic Engineering

## References

1. Yakhno, O. M., Cherniuk, V. V., Hnativ, R. M. (2016). Napirni potoky zi zminnymy kharakterystykamy. Lviv: Vydavnytstvo Lvivskoi politekhniky, 408.
2. Bosak, N., Cherniuk, V., Matlai, I., Bihun, I. (2019). Studying the mutual interaction of hydraulic characteristics of water­distributing pipelines and their spraying devices in the coolers at energy units. Eastern-European Journal of Enterprise Technologies, 3 (8 (99)), 23–29. doi: https://doi.org/10.15587/1729-4061.2019.166309
3. Petrov, G. A. (1964). Gidravlika peremennoy massy (Dvizhenie zhidkosti s izmeneniem raskhoda vdol' puti). Kharkiv: Har'kovskiy gosudarstvenniy universitet, 224.
4. Liu, H., Zong, Q., Lv, H., Jin, J. (2017). Analytical equation for outflow along the flow in a perforated fluid distribution pipe. PLOS ONE, 12 (10), e0185842. doi: https://doi.org/10.1371/journal.pone.0185842
5. Smyslov, V. V., Konstantinov, Yu. M. (1971). K raschyotu dyrchatyh trub s razdachey raskhoda vdol' puti. Gidravlika i gidrotekhnika, 12, 47–52.
6. Naumenko, I. I. (1980). Gidravlicheskiy raschet polivnyh truboprovodov kapel'nogo orosheniya. Gidravlika i gidrotekhnika, 30, 70–77.
7. Kovalenko, V. N., Boyko, V. I. (1989). Ob uravnenii ustanovivshegosya napornogo dvizheniya zhidkosti v tsilindricheskoy trube s otdeleniem raskhoda vdol' puti. Izvestiya vuzov. Stroitel'stvo i arhitektura, 4, 84–87.
8. Kravchuk, A. M., Kravchuk, O. Ya. (2015). Do metodyky hidravlichnoho rozrakhunku napirnykh perforovanykh rozpodilchykh truboprovodiv system vodopostachannia ta vodovidvedennia. Problemy vodopostachannia, vodovidvedennia ta hidravliky, 25, 117–124. Available at: http://nbuv.gov.ua/UJRN/PVVG_2015_25_20
9. Claudio, D. (1962). I condotti emungenti da in serbatoio. Contronto fra risultati teorici esperimentali atti e men. Accad. patav. scilettere ed arti, 74 (2), 188–197.
10. Berlamont, J., Van der Beken, A. (1973). Solutions for Lateral Outflow in Perforated Conduits. Journal of the Hydraulics Division, 99 (9), 1531–1549. doi: https://doi.org/10.1061/jyceaj.0003744
11. Povkh, I. L., Chernyuk, V. V. (1989). Resistance of converging sections during the turbulent flow of water with polyacrylamide additives. Journal of Engineering Physics, 57 (5), 1267–1270. doi: https://doi.org/10.1007/bf00871258
12. Chen, A., Sparrow, E. M. (2009). Turbulence modeling for flow in a distribution manifold. International Journal of Heat and Mass Transfer, 52 (5-6), 1573–1581. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.006
13. Chen, A. W., Sparrow, E. M. (2009). Effect of exit-port geometry on the performance of a flow distribution manifold. Applied Thermal Engineering, 29 (13), 2689–2692. doi: https://doi.org/10.1016/j.applthermaleng.2008.12.035
14. Hassan, J. M., Mohamed, T. A., Mohammed, W. S., Alawee, W. H. (2014). Modeling the Uniformity of Manifold with Various Configurations. Journal of Fluids, 2014, 1–8. doi: https://doi.org/10.1155/2014/325259
15. Zemlyanaya, N. V., Gulyakin, A. V. (2017). Analysis of Causes of Non-Uniform Flow Distribution in Manifold Systems with Variable Flow Rate along Length. IOP Conference Series: Materials Science and Engineering, 262, 012098. doi: https://doi.org/10.1088/1757-899x/262/1/012098
16. Lee, S., Moon, N., Lee, J. (2012). A study on the exit flow characteristics determined by the orifice configuration of multi-perforated tubes. Journal of Mechanical Science and Technology, 26 (9), 2751–2758. doi: https://doi.org/10.1007/s12206-012-0721-z
17. Abubakar, S. S. (1977). Factors Affecting orifice Discharge in a Multi-outlet irrigation pipe. Manhattan, Kansas, 84. Available at: https://krex.k-state.edu/dspace/bitstream/handle/2097/26998/LD2668T41979A28.pdf?sequence=1&isAllowed=y
18. Cherniuk, V. V., Ivaniv, V. V. (2016). Pat. No. 115840 UA. Sposib rehuliuvannia shliakhovoi vytraty ridyny v truboprovodakh z nasadkamy. No. a201611498; declareted: 14.11.2016; published: 26.12.2017, Bul. No. 24. Available at: https://uapatents.com/6-115840-sposib-regulyuvannya-shlyakhovo-vitrati-ridini-v-truboprovodakh-z-nasadkami.html
19. Wang, C.-C., Yang, K.-S., Tsai, J.-S., Chen, I. Y. (2011). Characteristics of flow distribution in compact parallel flow heat exchangers, part II: Modified inlet header. Applied Thermal Engineering, 31 (16), 3235–3242. doi: https://doi.org/10.1016/j.applthermaleng.2011.06.003
20. Kim, N.-H., Byun, H.-W. (2013). Effect of inlet configuration on upward branching of two-phase refrigerant in a parallel flow heat exchanger. International Journal of Refrigeration, 36 (3), 1062–1077. doi: https://doi.org/10.1016/j.ijrefrig.2012.12.001
21. Zeng, D., Pan, M., Tang, Y. (2012). Qualitative investigation on effects of manifold shape on methanol steam reforming for hydrogen production. Renewable Energy, 39 (1), 313–322. doi: https://doi.org/10.1016/j.renene.2011.08.027
22. Wang, P., Pan, W., Dai, G. (2020). A CFD‐based design scheme for the perforated distributor with the control of radial flow. AIChE Journal, 66 (5). doi: https://doi.org/10.1002/aic.16901
23. García-Guendulain, J. M., Riesco-Ávila, J. M., Picón-Núñez, M. (2020). Reducing thermal imbalances and flow nonuniformity in solar collectors through the selection of free flow area ratio. Energy, 194, 116897. doi: https://doi.org/10.1016/j.energy.2020.116897
24. Singh, R. K., Rao, A. R. (2011). Fluid flow behavior and distribution in perforated tubes. Transactions, SMiRT, 21, 6–11. Available at: https://repository.lib.ncsu.edu/bitstream/handle/1840.20/32672/p365.pdf?sequence=1
25. Chernuk, V. V. (2008). Method of calculation of head power distributed conduit pipes. Applied hydromechanics, 10 (82 (3)), 65–76. Available at: http://hydromech.org.ua/content/en/ph/10_3_65-76.html
26. Stepanov, M. P., Ovcharenko, I. H., Skobel'tsyn, Yu. A. (1984). Spravochnik po gidravlike dlya melioratorov. Moscow: Kolos, 207.
27. Chernyuk, V. V., Orel, V. I. (2009). Experimental Verification of a New Method of Calculation for Pressure Distributive Pipelines. Zeszyt Naukowy Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska, 266 (54), 27–34. Available at: https://www.researchgate.net/publication/321052315_Experimental_Verification_of_a_New_Method_of_Calculation_for_Pressure_Distributive_Pipelines
28. Cherniuk, V. V., Ivaniv, V. V., Bihun, I. V., Wojtowicz, J. M. (2019). Coefficient of Flow Rate of Inlet Cylindrical Nozzles with Lateral Orthogonal Inflow. Lecture Notes in Civil Engineering, 50–57. doi: https://doi.org/10.1007/978-3-030-27011-7_7
29. Ivaniv, V., Cherniuk, V., Kochkodan, V. (2020). Non-uniformity of Water Inflow into Pressure Collector-Pipeline Depending on the Values of Reynolds Criterion and of Inflow Jets Angles. Proceedings of EcoComfort 2020, 142–149. doi: https://doi.org/10.1007/978-3-030-57340-9_18
30. Kravchuk, A. M. Chernyshev, D. O., Kravchuk, O. A. (2021). Hidravlika napirnykh perforovanykh truboprovodiv ochysnykh sporud system vodopostachannia ta vodovidvedennia. Kyiv: Kyivskyi natsionalnyi universytet budivnytstva y arkhitektury, 207.
31. Kravchuk, A., Kochetov, G., Kravchuk, O. (2020). Improving the calculation of collecting perforated pipelines for water treatment structures. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 23–28. doi: https://doi.org/10.15587/1729-4061.2020.216366
32. Polyakov, V., Kravchuk, A., Kochetov, G., Kravchuk, O. (2019). Clarification of aqueous suspensions with a high content of suspended solids in rapid sand filters. EUREKA: Physics and Engineering, 1, 28–45. doi: https://doi.org/10.21303/2461-4262.2019.00827
33. Cherniuk, V., Ivaniv, V. (2017). Influence of Values of Angle of Jet-joining on Non-uniformity of Water Inflow Along the Path in Pressure Collector-Pipeline. Proccedings of 10th International Conference "Environmental Engineering". doi: https://doi.org/10.3846/enviro.2017.073

2021-12-21

## How to Cite

Cherniuk, V., Hnativ, R., Kravchuk, O., Orel, V., Bihun, I., & Cherniuk, M. (2021). The problem of hydraulic calculation of pressure distribution pipelines . Eastern-European Journal of Enterprise Technologies, 6(7 (114), 93–103. https://doi.org/10.15587/1729-4061.2021.246852

## Section

Applied mechanics