DOI: https://doi.org/10.15587/1729-4061.2014.26123

Extension of methods of intelligent control of complex objects

Евгений Иванович Кучеренко, Александр Дмитриевич Дрюк

Abstract


It was determined that the existing methods and models do not fully implement the object control strategy. The research problem statement was formulated as the control function optimization on a set of restrictions. The need for modifying the existing models was shown. The modified model as a system of fuzzy production rules, which unlike the existing ones, expands the functional capabilities and improves the accuracy of intelligent object control, was implemented.

An ultra-fast annealing method that guarantees only a statistical finding of the global minimum was considered. A modification of the method, which greatly improves the quality of intelligent control by multiple findings of local optima at different initial approximations, was proposed.

The performed simulation experiments confirmed the effectiveness of the obtained solutions. The prospects for further studies were defined.


Keywords


mobile object; intelligent control function; production rules; ultra-fast annealing; modification

References


Afonin, V. L., Makushkin, V. A. (2005). Intellectual robotic systems. Moscow, Russia: Internet University of Information Technology, 208.

Makarov, I. M., Lokhin, V. M., Man’ko, S. V., Romanov, M. P. (2009). Automation of synthesis and learning the intellectual control systems. Moscow, Russia: Science, 228.

Kucherenko, Ye. I., Driuk, O. D. (2013). Stochastic models and methods of suboptimal complex objects routing. Bionic Intelligence, 80 (1), 45–53.

Xianhua Jiang, Motai, Y., Xingquan, Zhu. Predictive fuzzy logic controller for trajectory tracking of a mobile robot. Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05. doi:10.1109/smcia.2005.1466943

Al Yahmedi, A. S., Muhammed, A. (2011). Fuzzy Logic Based Navigation of Mobile Robots. Recent Advances in Mobile Robotics, 287–310. doi:10.5772/25621

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77 (4), 541–580. doi:10.1109/5.24143

Kucherenko, Ye. I., Driuk, O. D. (2011). Reachability analysis methods for network models in problems of complex systems design. Instrumentation Technology, 35 (2), 37–42.

Novák, V. (2005). On fuzzy type theory. Fuzzy Sets and Systems, 149 (2), 235–273. doi:10.1016/j.fss.2004.03.027

Zimmermann, H.-J. (1996). Fuzzy Set Theory — and Its Applications, 315. doi:10.1007/978-94-015-8702-0

Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathematical and Computer Modelling, 18 (11), 29–57. doi:10.1016/0895-7177(93)90204-c


GOST Style Citations


1. Афонин, В. Л. Интеллектуальные робототехнические системы [Текст] / В. Л. Афонин, В. А. Макушкин. – М.: Интернет-Университет Информационных Технологий, 2005. – 208 с.

2. Макаров, И. М. Автоматизация синтеза и обучение интеллектуальных систем управления [Текст] / И. М. Макаров, В. М. Лохин и др. – М.: Наука, 2009. – 228 с.

3. Кучеренко, Е. И. Стохастические модели и методы субоптимальной маршрутизации сложных объектов [Текст] / Е. И. Кучеренко, А. Д. Дрюк // Бионика интеллекта. – 2013. – № 1 (80). – С. 45–53.

4. Jiang X. Predictive fuzzy logic controller for trajectory tracking of a mobile robot [Text] / X. Jiang, Y. Motai, X. Zhu // IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications Helsinki University of Technology, Espoo, Finland, 2005. – P. 29–32. doi:10.1109/smcia.2005.1466943

5. Al Yahmedi, A. S. Fuzzy Logic Based Navigation of Mobile Robots [Text] / A. S. Al Yahmedi, M. A. Fatmi. – Recent Advances in Mobile Robotics, 2011. – P. 287–310. doi:10.5772/25621

6. Murata, T. Petri nets: Properties, Analysis and Applications [Text] / T. Murata // Proc. of the IEEE. – 1989. – Vol. 77, Issue 4. – P. 541–580. doi:10.1109/5.24143

7. Кучеренко, Е. И. Методы анализа достижимости на сетевых моделях в задачах проектирования сложных систем [Текст] / Е. И. Кучеренко, А. Д. Дрюк // Технология приборостроения. – 2011. – № 2. – С. 37–42.

8. Novak, V. On fuzzy type theory [Text] / V. Novak // Fuzzy Sets and Systems. – 2005. – Vol. 149, Issue 2. – P. 235–273. doi:10.1016/j.fss.2004.03.027

9. Zimmermann, H.-J. Fuzzy Set Theory and its Applications. 3rd ed. [Text] / H.-J. Zimmermann. – Dordrecht: Kluwer Academic Publishers, 1996. – 315 p. doi:10.1007/978-94-015-8702-0

10. Ingber, L. Simulated Annealing: Practice versus theory [Text] / L. Ingber // Mathematical and Computer Modelling. – 1993. – Vol. 18, Issue 11. – P. 29–57. doi:10.1016/0895-7177(93)90204-c






Copyright (c) 2014 Евгений Иванович Кучеренко, Александр Дмитриевич Дрюк

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061