DOI: https://doi.org/10.15587/1729-4061.2014.26246

Sorption of cobalt, chromium and uranium ions on Fe/Ti-pillared montmorillonite

Ігор Володимирович Пилипенко, Лариса Миколаївна Спасьонова, Ірина Андріївна Ковальчук, Василь Валерійович Веремеєнко

Abstract


The structural and adsorption properties of montmorillonite pillared with titanium and iron polyhydroxocomplexes are given in the paper. It was found that the composition of the polyhydroxocomplexes significantly affects the properties of the resultant materials. For studying the basic properties of the resultant materials, the X-ray phase analysis, the low-temperature nitrogen adsorption, and adsorption of the metal ions from aqueous solutions were used.

The results of the X-ray phase analysis, with changes in the respective basal reflections, confirm the presence of iron and titanium polyhydroxocomplexes in the interlayer space of the mineral. Synthesized pillared minerals have a well-developed specific surface, micro- and mesoporosity, as confirmed by the low-temperature nitrogen adsorption.

It was found that the pillared montmorillonite shows relatively high adsorption characteristics relatively to chromium and uranium ions. Adsorption on the pillared montmorillonite samples significantly depends on the pH solutions, adsorptive properties and the composition of the polyhydroxocomplexes, which were used for synthesizing adsorbents.

The research results can be useful for developing and synthesizing new types of inorganic ion-exchange materials for extracting cations and anions of various inorganic toxicants from aqueous solutions.


Keywords


pillared montmorillonite; adsorption; polyhydroxocomplex; porous structure; modification; cobalt; chromium; uranium

References


Bergaya, F., Theng, B. K. G., Lagaly, G. (2006). Handbook of clay science. London : Elsevier, 1224. doi: 10.1016/S1572-4352(05)01012-3

Pylypenko, I. V. (2014). Granular composite for removal of cobalt and methylene blue ions. Eastern Eur. J. Enterprise Technol., 11, 16–20. doi: 10.15587/1729-4061.2014.22937

Romero, A., Dorado, F., Asencio, I., Garciа, P. B., Valverde, J. L. (2006). Ti-pillared clays: synthesis and general characterization. Clays Clay Miner., 6, 737–747. doi: 10.1346/CCMN.2006.0540608

Lei, G., Ma, J., Guan, X., Song, A., Cui, Y. (2009). Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water Guoyuan. Desalination, 247, 518–529. doi: 10.1016/j.desal.2008.06.026

Mei, J. G., Yu, S. M., Cheng, J. (2004). Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti-PILC employing microwave irradiation. Catal. Commun., 5, 437–440. doi: 10.1016/j.catcom.2004.05.009

Jagtap, N., Ramaswamy, V. (2006). Oxidation of aniline over titania pillared montmorillonite clays. Appl. Clay Sci., 33, 89–98. doi: 10.1016/j.clay.2006.04.001

Na, P., Jia, X., Yuan, B., Li, Y., Na, J., Chen, Y., Wang, L. (2010). Arsenic adsorption on Ti-pillared montmorillonite. J. Chem. Technol. Biotechnol., 85, 708–714. doi: 10.1002/jctb.2360

Masih, D., Izumi Y., Aika K., Seida Y. (2007). Optimization of an iron intercalated montmorillonite preparation for the removal of arsenic at low concentrations. Eng. Life Sci., 1, 52–60. doi: 10.1002/elsc.200620171

Gupta, K., Ghosh, U. C. (2009). Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. Journal of hazardous materials, 161(2), 884-892. doi: 10.1016/j.jhazmat.2008.04.034

Dou, B., Dupont V., Pan W., Chen B. (2011). Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. Chem. Eng. J., 166, 631–638. doi: 10.1016/j.cej.2010.11.035

Cardoso, V. D. A., Souza, A. G. D., Sartoratto, P. P., Nunes, L. M. (2004). The ionic exchange process of cobalt, nickel and copper (II) in alkaline and acid-layered titanates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248(1), 145-149. doi: 10.1016/j.colsurfa.2004.09.012

Abou-Mesalam, M. M. (2004). Applications of inorganic ion exchangers: II—adsorption of some heavy metal ions from their aqueous waste solution using synthetic iron (III) titanate. Adsorption, 10(1), 87–92. doi: 10.1023/B:ADSO.0000024038.32712.18

Ahmed, M. A., El-Katori, E. E., Gharni, Z. H. (2013). Photocatalytic degradation of methylene blue dye using Fe< sub> 2 O< sub> 3/TiO< sub> 2 nanoparticles prepared by sol–gel method. Journal of Alloys and Compounds, 553, 19-29. doi: 10.1016/j.jallcom.2012.10.038

Li, X., Li, G., Qu, Z., Zhang, D., Liu, S. (2011). The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene. Appl. Catal., A: General., 2, 82–87. doi: 10.1016/j.apcata.2011.03.020

Ramesh, A., Hasegawa, H., Maki, T., Ueda, K. (2007). Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep. Purif. Technol., 1, 90–100. doi: 10.1016/j.seppur.2007.01.025

Rouquerol, F. (2014). Adsorption by powders and porous solids principles, methodology and applications. London: Elsevier, 626. doi: 10.1016/B978-0-08-097035-6.00012-7

Valverde, J. L., Romero, A., Romero, R., Garcia, P. B., Sanchez, M. L., Asencio, I. (2005). Preparation and characterization of Fe-pilcs. Influence of the synthesis parameters. Clays Clay Miner., 6, 613–621. doi: 10.1346/CCMN.2005.0530607

Yuan, P., Yin, X., He, H., Yang, D., Wang, L., Zhu, J. (2006). Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous Mesoporous Mater., 93, 240–247. doi: 10.1016/j.micromeso.2006.03.002

Amphlett, C. B., Mcdonald, L. A., Redman, M. J. (1958). Synthetic inorganic ion-exchange materials. II Hydrous zirconium oxide and other oxides. J. Inorg. Nucl. Chem., 6, 236–245. doi: 10.1016/0022-1902(58)80153-0

Li, D., Scala, A. A., Ma, Y. H. (1996). Adsorption and characteristics of base-treated pillared clays. Adsorption., 2, 227–235. doi: 10.1007/BF00128304

Kornilovych, B. Yu., Sorokin, O. G., Pavlenko, V. M., Koshyk, Y. J. (2011). Environmental technology in uranium mining and processing industry. Kiev: Norma, 156.

Chen, L., He, B. Y., He, S., Wang, T. J., Su, C. L., Jin, Y. (2012). Fe–Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technol., 227, 3–8. doi: 10.1016/j.powtec.2011.11.030


GOST Style Citations


1. Bergaya, F. Handbook of clay science [Text] / F. Bergaya, B. K. G. Theng, G. Lagaly. – London: Elsevier, 2006. – 1224 p. doi: 10.1016/S1572-4352(05)01012-3

2. Пилипенко, І. В. Гранульований композит для видалення іонів кобальту та метиленового голубого [Текст] / І. В. Пилипенко // Східно-Європейський журнал передових технологій. – 2014. – № 11 (68). – С. 16–20.

3. Romero, A. Ti-pillared clays: synthesis and general characterization [Text] / A. Romero, F. Dorado, I. Asencio, P. B. Garciа, J. L. Valverde // Clays Clay Miner. – 2006. – V 54. – № 6. – P. 737–747. doi: 10.1346/CCMN.2006.0540608

4. Lei, G. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water Guoyuan [Text] / G. Lei, J. Ma, X. Guan, A. Song, Y. Cui // Desalination. – 2009. – № 247. – Р. 518–529. doi: 10.1016/j.desal.2008.06.026

5. Mei, J. G. Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti-PILC employing microwave irradiation [Text] / J. G. Mei, S. M. Yu, J. Cheng // Catal. Commun. – 2004. – № 5. – Р. 437–440. doi: 10.1016/j.catcom.2004.05.009

6. Jagtap, N. Oxidation of aniline over titania pillared montmorillonite clays [Text] / N. Jagtap, V. Ramaswamy // Appl. Clay Sci. – 2006. – № 33. – Р. 89–98. doi: 10.1016/j.clay.2006.04.001

7. Na, P. Arsenic adsorption on Ti-pillared montmorillonite [Text] / P. Na, X. Jia, B. Yuan, Y. Li, J. Na, Y. Chen, L. Wang.// J. Chem. Technol. Biotechnol. – 2010. – Vol. 85. – Р. 708–714. doi: 10.1002/jctb.2360

8. Masih, D. Optimization of an iron intercalated montmorillonite preparation for the removal of arsenic at low concentrations [Text] / D. Masih, Y. Izumi, K. Aika, Y. Seida // Eng. Life Sci. – 2007. – Vol. 7, Issue 1. – Р. 52–60. doi: 10.1002/elsc.200620171

9. Gupta, K. Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution [Text] / K. Gupta, U. C. Ghosh // Journal of hazardous materials. – 2009. – V 161. – №. 2. – С. 884-892. doi: 10.1016/j.jhazmat.2008.04.034

10. Dou, B. Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite [Text] / B. Dou, V. Dupont, W. Pan, B. Chen // Chem. Eng. J. – 2011. – Vol. 166. – P. 631–638. DOI: 10.1016/j.cej.2010.11.035

11. Cardoso, V. A. The ionic exchange process of cobalt, nickel and copper (II) in alkaline and acid-layered titanates [Text] / V. A. Cardoso, A. G. Souza, P. P. C. Sartoratto, L. M. Nunes // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2004. – Vol. 248, Issue 1. – P. 145–149. doi: 10.1016/j.colsurfa.2004.09.012

12. Abou-Mesalam, M. M. Applications of inorganic ion exchangers: II –adsorption of some heavy metal ions from their aqueous waste solution using synthetic iron (III) titanate [Text] / M. M. Abou-Mesalam // Adsorption. – 2004. – Vol. 10, Issue 1. – P. 87–92. doi: 10.1023/B:ADSO.0000024038.32712.18

13. Ahmed, M. A. Photocatalytic degradation of methylene blue dye using Fe< sub> 2 O< sub> 3/TiO< sub> 2 nanoparticles prepared by sol–gel method [Text] / M. A. Ahmed, E. E. El-Katori, Z. H. Gharni //Journal of Alloys and Compounds. – 2013. – Vol. 553. – P. 19-29. doi: 10.1016/j.jallcom.2012.10.038

14. Li, X. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene [Text] / X. Li, G. Lu, Z. Qu, D. Zhang, S. Liu // Appl. Catal., A: General. – 2011. – Vol. 398, Issue 2. – P. 82–87. doi: 10.1016/j.apcata.2011.03.020

15. Ramesh, A. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite [Text] / A. Ramesh, H. Hasegawa, T. Maki, K. Ueda. // Sep. Purif. Technol. – 2007. – V 56. – №1. – P. 90–100. doi: 10.1016/j.seppur.2007.01.025

16. Rouquerol, F. Adsorption by Powders and Porous Solids Principles, Methodology and Applications [Text] / F. Rouquerol. – London: Elsevier, 2014. – 626 p. doi: 10.1016/B978-0-08-097035-6.00012-7

17. Valverde, J. L. Preparation and characterization of Fe-pilcs. Influence of the synthesis parameters [Text] / J. L. Valverde, A. Romero, R. Romero, P. B. Garcia, M. L. Sanchez, I. Asencio // Clays Clay Miner. – 2005. – Vol. 53, Issue 6. – Р. 613–621. doi: 10.1346/CCMN.2005.0530607

18. Yuan, P. Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method [Text] / P. Yuan, X. Yin, H. He, D. Yang, L. Wang, J. Zhu // Microporous Mesoporous Mater. – 2006. – Vol. 93. – Р. 240–247. doi: 10.1016/j.micromeso.2006.03.002

19. Amphlett, C. B. Synthetic inorganic ion-exchange materials. II Hydrous zirconium oxide and other oxides [Text] / C. B. Amphlett, L. A. Mcdonald, M. J. Redman // J. Inorg. Nucl. Chem. – 1958. – Vol. 6. – Р. 236–245. doi: 10.1016/0022-1902(58)80153-0

20. Li, D. Adsorption and characteristics of base-treated pillared clays [Text] / D. Li, A. A. Scala, Y. H. Ma // Adsorption. – 1996. – Vol. 2. – Р. 227–235. doi: 10.1007/BF00128304

21. Корнілович, Б. Ю. Природоохоронні технології в урановидобувній та переробній промисловості [Текст] / Б. Ю. Корнілович, О. Г. Сорокін, В. М. Павленко, Ю. Й. Кошик. – К.: «Норма», 2011. – 156 с.

22. Chen, L. Fe–Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism [Text] / L. Chen, B. Y. He, S. He, T. J. Wang, C. L. Su, Y. Jin // Powder Technol. – 2012. – Vol. 227. – Р. 3–8. doi: 10.1016/j.powtec.2011.11.030






Copyright (c) 2014 Ігор Володимирович Пилипенко, Ірина Андріївна Ковальчук, Василь Валерійович Веремеєнко, Лариса Миколаївна Спасьонова

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061