Development of a model of combination of solar concentrators and agricultural fields

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.269106

Keywords:

agricultural crops, mathematical model, solar concentrator, flat triangular mirrors, assembly

Abstract

We have developed several prototypes of solar concentrators that are compact, light, and inexpensive. As an example of solar concentrators, we selected parabolic solar concentrators with plane mirrors that approximate the parabolic surface. The green energy is very important in modern world because of global climate change, which has caused disproportion in the ecological balance, population growth rates, an increase in demand for food and electricity against the backdrop of a decrease in arable land. They are now the main challenges to the development of agriculture and ensuring sustainable food security of many countries. In this paper, as one of the ways to address these challenges, the problems of combining crops with agrivoltaics are studied using the example of two countries – Mexico and Azerbaijan. The economy of both countries is based on oil production, relief and climate have many common features, which are expressed particularly in the abundance of solar radiation, the predominance of mountainous regions with remote and hard-to-reach settlements that need to create autonomous life support systems. A methodology is proposed for the evaluation of the impact of combinations of solar concentrators together with certain agricultural crops. The proposed mathematical model is simple and applicable for different cases of combination of solar concentrators and agricultural fields. The main problem for proposed solar concentrators is the automatization of the assembly process of these solar concentrators. We proposed two methods of assembly that is, using a parabolic rule and using a robotic arm with a stereoscopic vision system. Both methods are described in this article. The simulation of these processes was made with using software of SolidWorks

Author Biographies

Ernst Kussul, Universidad Nacional Autónoma de México

Doctor of Technical Sciences, Profesor, Investigator Titular C, Head of Group

Department of Micro and Nanotechnology

Instituto de Ciencias Aplicadas y Tecnología

Tetyana Baydyk, Universidad Nacional Autónoma de México

Doctor of Technical Sciences, Profesor, Investigator Titular C

Department of Micro and Nanotechnology

Instituto de Ciencias Aplicadas y Tecnología

Masuma Mammadova, Ministry of Science and Education

Doctor of Technical Sciences, Professor, Head of Department

Department of Number 11

Institute of Information Technologies

Jorge Luis Rodriguez, Universidad de Colima

PhD Student

Facultad de Ciencias Químicas

References

  1. World Population Prospects 2022. Summary of Results. United Nations. Available at: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
  2. Analysis of climate policies of the countries of Eastern Europe, Caucasus and Central Asia (2020). EECCA. Available at: https://infoclimate.org/wp-content/uploads/2020/12/overview-of-climate-policies-eecca.pdf
  3. Nguyen, T.-H., Sahin, O., Howes, M. (2021). Climate Change Adaptation Influences and Barriers Impacting the Asian Agricultural Industry. Sustainability, 13 (13), 7346. doi: https://doi.org/10.3390/su13137346
  4. The Paris Agreement. Available at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
  5. Viana, C. M., Freire, D., Abrantes, P., Rocha, J., Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment, 806, 150718. doi: https://doi.org/10.1016/j.scitotenv.2021.150718
  6. Skuras, D., Psaltopoulos, D. (2012). A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. Building Resilience for Adaptation to Climate Change in the Agriculture Sector, 23, 217–260.
  7. Zhu, X., Zhang, Z., Chen, X., Jia, F., Chai, Y. (2022). Nexus of mixed-use vitality, carbon emissions and sustainability of mixed-use rural communities: The case of Zhejiang. Journal of Cleaner Production, 330, 129766. doi: https://doi.org/10.1016/j.jclepro.2021.129766
  8. Mamedova, M., Dzhabrailova, Z. (2015). Multi criteria optimization of human resource management problems based on the modified topsis method. Eastern-European Journal of Enterprise Technologies, 2 (4 (74)), 48–62. doi: https://doi.org/10.15587/1729-4061.2015.40533
  9. Steiner, A., Aguilar, G., Bomba, K., Bonilla, J. P., Campbell, A., Echeverria, R. et al. (2020). Actions to Transform Food Systems under Climate Change. Wageningen. Available at: https://ageconsearch.umn.edu/record/310920/files/CCAFS%20Actions%20to%20Transform%20Food%20Systems%20Under%20Climate%20Change.pdf
  10. Dinesh, H., Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. doi: https://doi.org/10.1016/j.rser.2015.10.024
  11. Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39 (4). doi: https://doi.org/10.1007/s13593-019-0581-3
  12. Santra, P., Pande, P. C., Kumar, S., Mishra, D., Singh, R. (2017). Agri-voltaics or solar farming: the concept of integrating solar PV based electricity generation and crop production in a single land use system. International Journal of Renewable Energy Research-IJRER, 7 (2), 694–699. doi: https://doi.org/10.20508/ijrer.v7i2.5582.g7049
  13. Coşgun, A. E. (2021). The potential of Agrivoltaic systems in TURKEY. Energy Reports, 7, 105–111. doi: https://doi.org/10.1016/j.egyr.2021.06.017
  14. Cho, J., Park, S. M., Park, A. R., Lee, O. C., Nam, G., Ra, I.-H. (2020). Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies, 13 (18), 4815. doi: https://doi.org/10.3390/en13184815
  15. Ravi, S., Macknick, J., Lobell, D., Field, C., Ganesan, K., Jain, R. et al. (2016). Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy, 165, 383–392. doi: https://doi.org/10.1016/j.apenergy.2015.12.078
  16. Sekiyama, T., Nagashima, A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments, 6 (6), 65. doi: https://doi.org/10.3390/environments6060065
  17. Goetzberger, A., Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1 (1), 55–69. doi: https://doi.org/10.1080/01425918208909875
  18. Scognamiglio, A. et al. (2014). Photovoltaic Greenhouses: A Feasible Solutions for Islands? Design, Operation, Monitoring and Lessons Learned from a Real Case Study. The 6th World Conference on Photovoltaic Energy Conversion. Kyoto.
  19. Havrysh, V., Kalinichenko, A., Szafranek, E., Hruban, V. (2022). Agricultural Land: Crop Production or Photovoltaic Power Plants. Sustainability, 14 (9), 5099. doi: https://doi.org/10.3390/su14095099
  20. Fthenakis, V., Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), 1465–1474. doi: https://doi.org/10.1016/j.rser.2008.09.017
  21. Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117–132. doi: https://doi.org/10.1016/j.agrformet.2013.04.012
  22. Kussul, E. (2020). Combinations of Solar Concentrators with Agricultural Plants. Journal of Environmental Science and Engineering B, 9 (5). doi: https://doi.org/10.17265/2162-5263/2020.05.002
  23. Zhu, Z., Zheng, H., Wang, Q., Chen, M., Li, Z., Zhang, B. (2018). The study of a novel light concentration and direct heating solar distillation device embedded underground. Desalination, 447, 102–119. doi: https://doi.org/10.1016/j.desal.2018.08.021
  24. Ye, H., Zheng, Y., Zheng, H., Liang, S. (2020). Sustainable Agriculture Irrigation System Using a Novel Solar Still Design With a Compound Parabolic Concentrator Reflector. Journal of Solar Energy Engineering, 142 (3). doi: https://doi.org/10.1115/1.4045826
  25. Amaducci, S., Yin, X., Colauzzi, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. Applied Energy, 220, 545–561. doi: https://doi.org/10.1016/j.apenergy.2018.03.081
  26. Scilab. ESI Group. Available at: https://www.scilab.org/
  27. Casares de la Torre, F. J., Varo, M., López-Luque, R., Ramírez-Faz, J., Fernández-Ahumada, L. M. (2022). Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants. Renewable Energy, 187, 537–550. doi: https://doi.org/10.1016/j.renene.2022.01.081
  28. Thakur, A. K., Singh, R., Gehlot, A., Kaviti, A. K., Aseer, R., Suraparaju, S. K. et al. (2022). Advancements in solar technologies for sustainable development of agricultural sector in India: a comprehensive review on challenges and opportunities. Environmental Science and Pollution Research, 29 (29), 43607–43634. doi: https://doi.org/10.1007/s11356-022-20133-0
  29. In-depth Review of the Energy Efficiency Policy of the Republic of Azerbaijan (2020). Available at: https://www.energycharter.org/what-we-do/energy-efficiency/energy-efficiency-country-reviews/in-depth-review-of-energy-efficiency-policies-and-programmes/in-depth-review-of-the-energy-efficiency-policy-of-the-republic-of-azerbaijan
  30. General information on nature of Azerbaijan. Available at: https://azerbaijan.az/en/information/201
  31. Veysey, J., Octaviano, C., Calvin, K., Martinez, S. H., Kitous, A., McFarland, J., van der Zwaan, B. (2016). Pathways to Mexico’s climate change mitigation targets: A multi-model analysis. Energy Economics, 56, 587–599. doi: https://doi.org/10.1016/j.eneco.2015.04.011
  32. Geography of Mexico. Available at: http://worldfacts.us/Mexico-geography.htm
  33. A Mexico Climate Overview. Available at: https://focusonmexico.com/climate-mexico/
  34. Mexico Clean Energy Report – Executive Summary. NREL, 64. Available at: https://www.nrel.gov/docs/fy22osti/82580.pdf
  35. Mustafayev, F., Kulawczuk, P., Orobello, C. (2022). Renewable Energy Status in Azerbaijan: Solar and Wind Potentials for Future Development. Energies, 15 (2), 401. doi: https://doi.org/10.3390/en15020401
  36. Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J. M., Bruce, N. (2007). Development of Micro Mirror Solar Concentrator. Proceedings of the 2nd IASME / WSEAS International Conference on Energy & Environment (EE'07). Portoroz, 293–298. Available at: https://www.academia.edu/27984489/Development_of_micro_mirror_solar_concentrator
  37. Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J. M., Bruce, N. (2008). Flat Facet Parabolic Solar Concentrator with Support Cell for One and More Mirrors. WSEAS TRANSACTIONS on POWER SYSTEMS, 8 (3), 577–586. Available at: https://www.academia.edu/573393/Flat_facet_parabolic_solar_concentrator_with_support_cell_for_one_and_more_mirrors
  38. Kussul, E., Makeyev, O., Baidyk, T., SanigerBlesa, J., Bruce, N., Lara-Rosano, F. (2011). Adjustment of Solar Concentrator Support Frame. In Proc. of the Intern. Conf. on Innovative Technologies. Bratislava, 314–316.
  39. Kussul, E., Makeyev, O., Baidyk, T., Blesa, J. S., Bruce, N., Lara-Rosano, F. (2011). The Problem of Automation of Solar Concentrator Assembly and Adjustment. International Journal of Advanced Robotic Systems, 8 (4), 46. doi: https://doi.org/10.5772/45685
  40. Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G., Kasatkina, L. (2002). Development of micromachine tool prototypes for microfactories. Journal of Micromechanics and Microengineering, 12 (6), 795–812. doi: https://doi.org/10.1088/0960-1317/12/6/311
Development of a model of combination of solar concentrators and agricultural fields

Downloads

Published

2022-12-30

How to Cite

Kussul, E., Baydyk, T., Mammadova, M., & Rodriguez, J. L. (2022). Development of a model of combination of solar concentrators and agricultural fields . Eastern-European Journal of Enterprise Technologies, 6(8 (120), 16–25. https://doi.org/10.15587/1729-4061.2022.269106

Issue

Section

Energy-saving technologies and equipment