Determining patterns in loading the body of a gondola with side wall cladding made from corrugated sheets under operating modes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.275547

Keywords:

gondola load, body strength, cladding resistance momentum, body biaxiality indicator

Abstract

The object of research is the processes of emergence, perception, and redistribution of loads in the body of a universal railroad gondola with a cladding of corrugated sheets.

To improve the strength of the sheets of cladding, it is proposed to strengthen the most loaded area in terms of height (1/3 of the bottom tie-up) with horizontal corrugations. Determination of the geometric parameters of the corrugation is carried out by the moment of resistance of the sheet. The dynamic load of the gondola body with improved cladding was determined by mathematical modeling. The fluctuations of the jump were taken into consideration, that is, the translational movements of the body relative to the vertical axis. The results of the solution of the mathematical model have made it possible to conclude that the studied dynamics indicators are within the permissible limits while the car movement is estimated as "excellent".

The calculation was performed of the strength of the body of a gondola with improved cladding. It has been established that the strength of the gondola body under the main operating load modes is ensured. According to the results of calculations of static strength, the calculation was performed of the fatigue strength of the gondola body. It must be said that the fatigue strength of the body cladding increases by 3.7 % compared to the typical one.

A feature of the results obtained is that the proposed improvement of the cladding can be carried out not only at the design stage but also during repairs of cars.

The scope of practical use of the results includes the engineering industry, in particular railroad transportation. At the same time, the conditions for the practical application of the research results are compliance with the requirements for loading and unloading operations of gondola cars.

The results of the current research will contribute to devising recommendations for the design of modern structures of gondolas and for improving the efficiency of their operation.

Author Biographies

Glib Vatulia, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor, Vice-Rector for Research

Alyona Lovska, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Associate Professor

Department of Wagon Engineering and Product Quality

Sergiy Myamlin, Ukrainian State University of Railway Transport

PhD, Researcher

Department of Electrical Power Engineering, Electrical Engineering and Electromechanics

Andrij Rybin, Ukrainian State University of Railway Transport

PhD, Senior Lecturer

Department of Wagon Engineering and Product Quality

Volodymyr Nerubatskyi, "РА OWEN" LLC

PhD, Scientific Consultant

Denys Hordiienko, ELAKS PJSC

Senior Engineer

References

  1. Šťastniak, P., Kurčík, P., Pavlík, A. (2018). Design of a new railway wagon for intermodal transport with the adaptable loading platform. MATEC Web of Conferences, 235, 00030. doi: https://doi.org/10.1051/matecconf/201823500030
  2. Fedosov-Nikonov, D. V., Sulym, A. O., Ilchyshyn, V. V., Safronov, O. M., Kelrikh, M. B. (2020). Study of strength characteristics of the long wheelbase flat cars. IOP Conference Series: Materials Science and Engineering, 985 (1), 012029. doi: https://doi.org/10.1088/1757-899x/985/1/012029
  3. Viznyak, R. I., Gudko, A. V. (2014). Design improvements filler assembly interim rack bar body in order to ensure gondola cars of strength in service. Zbirnyk naukovykh prats UkrDAZT, 147, 18–22. Available at: http://csw.kart.edu.ua/article/download/74033/69463
  4. Fedosov-Nikonov, D. V., Strynzha, A. A., Shamshei, D. A., Poluliakh, V. N., Fedorov, V. V., Shushmarchenko, V. A. (2019). The study of corrosion damage to car components during technical diagnostics. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, 3 (251), 181–185. Available at: http://dspace.luguniv.edu.ua/xmlui/handle/123456789/4845
  5. Baier, A., Majzner, M. (2012). Application of feature based method in constructing innovative sheathing of railway wagons. Journal of Achievements in Materials and Manufacturing Engineering, 52 (2), 91–98. Available at: https://delibra.bg.polsl.pl/dlibra/publication/35794/edition/32231
  6. Galimova, F., Khurmatov, Y., Abdulloev, M., Jumabekov, B., Sultonaliev, D., Ergeshova, D. (2021). Modern Gondola with Lightweight Body. Lecture Notes in Networks and Systems, 1043–1050. doi: https://doi.org/10.1007/978-3-030-80946-1_94
  7. Lee, W. G., Kim, J.-S., Sun, S.-J., Lim, J.-Y. (2016). The next generation material for lightweight railway car body structures: Magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (1), 25–42. doi: https://doi.org/10.1177/0954409716646140
  8. Olmos Irikovich, Z., Rustam Vyacheslavovich, R., Mahmod Lafta, W., Yadgor Ozodovich, R. (2020). Development of new polymer composite materials for the flooring of rail carriage. International Journal of Engineering & Technology, 9 (2), 378. doi: https://doi.org/10.14419/ijet.v9i2.30519
  9. Patrascu, A. I., Hadar, A., Pastrama, S. D. (2019). Structural Analysis of a Freight Wagon with Composite Walls. Materiale Plastice, 57 (2), 140–151. doi: https://doi.org/10.37358/mp.20.2.5360
  10. Buchacz, A., Baier, A., Herbuś, K., Majzner, M., Ociepka, P. (2015). Examination of a Cargo Space of a Freight Wagon Modified with Composite Panels. Applied Mechanics and Materials, 809-810, 944–949. doi: https://doi.org/10.4028/www.scientific.net/amm.809-810.944
  11. Płaczek, M., Wróbel, A., Olesiejuk, M. (2017). Modelling and arrangement of composite panels in modernized freight cars. MATEC Web of Conferences, 112, 06022. doi: https://doi.org/10.1051/matecconf/201711206022
  12. Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
  13. Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiky vahoniv. Kyiv: KUETT, 269.
  14. Fomin, O., Lovska, A., Skurikhin, D., Nerubatskyi, V., Sushko, D. (2022). Special Features of the Vertical Loading on a Flat Car Transporting Containers with Elastic-Viscous Links in their Interaction Units. 26th International Scientific Conference Transport Means 2022. Kaunas, 629–633.
  15. Bohach, I. V., Krakovetskyi, O. Yu., Kylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
  16. Sobolenko, O. V., Petrechuk, L. M., Ivashchenko, Yu. S., Yehortseva, Ye. Ye. (2020). Metody rishennia matematychnykh zadach u seredovyshchi Mathcad. Dnipro, 60. Available at: https://nmetau.edu.ua/file/navch_posibn_mathcad_2020_petrechuk.pdf
  17. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  18. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2021). Control and Accounting of Parameters of Electricity Consumption in Distribution Networks. 2021 XXXI International Scientific Symposium Metrology and Metrology Assurance (MMA). doi: https://doi.org/10.1109/mma52675.2021.9610907
  19. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2022). Adaptive Modulation Frequency Selection System in Power Active Filter. 2022 IEEE 8th International Conference on Energy Smart Systems (ESS). doi: https://doi.org/10.1109/ess57819.2022.9969261
  20. Kondratiev, A. V., Gaidachuk, V. E. (2021). Mathematical Analysis of Technological Parameters for Producing Superfine Prepregs by Flattening Carbon Fibers. Mechanics of Composite Materials, 57 (1), 91–100. doi: https://doi.org/10.1007/s11029-021-09936-3
  21. Vambol, O., Kondratiev, A., Purhina, S., Shevtsova, M. (2021). Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters. Eastern-European Journal of Enterprise Technologies, 2 (1 (110)), 70–80. doi: https://doi.org/10.15587/1729-4061.2021.227075
  22. Harak, S. S., Sharma, S. C., Harsha, S. P. (2014). Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method. Procedia Materials Science, 6, 1891–1898. doi: https://doi.org/10.1016/j.mspro.2014.07.221
  23. Fomin, O., Lovska, A., Khara, M., Nikolaienko, I., Lytvynenko, A., Sova, S. (2022). Adapting the load-bearing structure of a gondola car for transporting high-temperature cargoes. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.253770
  24. Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
  25. Lovska, A., Fomin, O., Píštěk, V., Kučera, P. (2020). Dynamic Load and Strength Determination of Carrying Structure of Wagons Transported by Ferries. Journal of Marine Science and Engineering, 8 (11), 902. doi: https://doi.org/10.3390/jmse8110902
  26. Lovska, A. (2014). Assessment of dynamic efforts to bodies of wagons at transportation with railway ferries. Eastern-European Journal of Enterprise Technologies, 3 (4 (69)), 36–41. doi: https://doi.org/10.15587/1729-4061.2014.24997
  27. Panchenko, S., Vatulia, G., Lovska, A., Ravlyuk, V., Elyazov, I., Huseynov, I. (2022). Influence of structural solutions of an improved brake cylinder of a freight car of railway transport on its load in operation. EUREKA: Physics and Engineering, 6, 45–55. doi: https://doi.org/10.21303/2461-4262.2022.002638
  28. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Pavliuchenkov, M., Kravchenko, K. (2022). The Analysis of the Loading and the Strength of the FLAT RACK Removable Module with Viscoelastic Bonds in the Fittings. Applied Sciences, 13 (1), 79. doi: https://doi.org/10.3390/app13010079
  29. Dižo, J., Harušinec, J., Blatnický, M. (2017). Structural Analysis of a Modified Freight Wagon Bogie Frame. MATEC Web of Conferences, 134, 00010. doi: https://doi.org/10.1051/matecconf/201713400010
  30. Dižo, J., Blatnický, M., Steišūnas, S., Skočilasová, B. (2018). Assessment of a rail vehicle running with the damaged wheel on a ride comfort for passengers. MATEC Web of Conferences, 157, 03004. doi: https://doi.org/10.1051/matecconf/201815703004
  31. Koziar, M. M., Feshchuk, Yu. V., Parfeniuk, O. V. (2018). Kompiuterna hrafika: SolidWorks. Kherson: Oldi-plius, 252. Available at: https://ep3.nuwm.edu.ua/22175/1/%D0%9A%D0%BE%D0%BC%D0%BF%27%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%B0%20%D0%B3%D1%80%D0%B0%D1%84%D1%96%D0%BA%D0%B0.pdf
  32. Pustiulha, S. I., Samostian, V. R., Klak, Yu. V. (2018). Inzhenerna hrafika v SolidWorks. Lutsk: Vezha, 172. Available at: https://lib.lntu.edu.ua/sites/default/files/2021-02/%D0%86%D0%BD%D0%B6%D0%B5%D0%BD%D0%B5%D1%80%D0%BD%D0%B0%20%D0%B3%D1%80%D0%B0%D1%84%D1%96%D0%BA%D0%B0%20%D0%B2%20SolidWorks.pdf
  33. Chykhladze, E. D. (2011). Opir materialiv. Kharkiv: UkrDAZT, 360. Available at: http://lib.kart.edu.ua/handle/123456789/4985
  34. Shvabiuk, V. I. (2016). Opir materialiv. Kyiv: Znannia, 400. Available at: https://btpm.nmu.org.ua/ua/download/navch-posib/%D0%A8%D0%B2%D0%B0%D0%B1%D1%8E%D0%BA.%D0%9E%D0%9C.%D0%9F%D1%96%D0%B4%D1%80%D1%83%D1%87%D0%BD%D0%B8%D0%BA.pdf
Determining patterns in loading the body of a gondola with side wall cladding made from corrugated sheets under operating modes

Downloads

Published

2023-04-30

How to Cite

Vatulia, G., Lovska, A., Myamlin, S., Rybin, A., Nerubatskyi, V., & Hordiienko, D. (2023). Determining patterns in loading the body of a gondola with side wall cladding made from corrugated sheets under operating modes. Eastern-European Journal of Enterprise Technologies, 2(7 (122), 6–14. https://doi.org/10.15587/1729-4061.2023.275547

Issue

Section

Applied mechanics