Longitudinal resonance vibrations in determining dynamic viscoelastic properties of textile materials

Authors

  • Світлана Анатоліївна Демішонкова Kyiv National University of Technologies and Design st. Nemirovich-Danchenko, 2, Kyiv, Ukraine, 01011, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.31202

Keywords:

viscoelastic properties, elasticity module, damping decrement, mechanical loss angle, vibration amplitude

Abstract

The study presents a method for estimating dynamic viscoelastic properties of textile materials. The method allows solving the problem of express analyzing of the properties of fabrics for sewing products with predictable consumer indices. The suggested direct determining of the angle of mechanical loss due to the simplified algorithm of technical playback does not require measuring vibration amplitudes. The fabric elasticity module is determined by measuring longitudinal resonance vibrations. The suggested method is especially convenient in measuring phasal angles for low frequency vibrations as well as angles of phasal shift in the range (-π/2; π/2) for harmonic vibrations. The maximal errors for the dynamic elasticity module Е(t) and the damping decrement δ do not exceed ±1,5 % and ±2,5 % respectively. The obtained findings enable a rational choice of textile materials for industrial sewing.

Author Biography

Світлана Анатоліївна Демішонкова, Kyiv National University of Technologies and Design st. Nemirovich-Danchenko, 2, Kyiv, Ukraine, 01011

Senior lecturer

Department of Electromechanical Systems

References

  1. GOST 20812-84 1. Plasmasi. Opredelenie dinamicheskogo modulya sdviga i tangensa ugla mehanicheskih poter metodom svobodnih krutilnih kolebaniy (1992). Enter. 01.01.1992. Moscow: Izd standartov, 27.
  2. GOST 19873-84 2. Plasmasi. Rezonansniy metod opredeleniya dinamicheskih moduley uprugosti I koeficientiv poteri pri kolebaniyah konsolno zakreplenogo obrazca (1992). Enter. 1994-01-01. Moscow: Izd standartov, 32.
  3. Mogahzy, Y. E. (2009). Engineering textiles, Integrating the design and manufacture of textile products. The Textile Institute, Woodhead Publishing Limited, Cambridge England, 538.
  4. Frontczak-Wasiak, I., Snycerski, M., Stempień, Z., Suszek, H. (2004). Measuring Method of Multidirectional Force Distribution in a Woven Fabric. Fibres & Textiles in Eastern Europe, 12/2 (46), 48–51.
  5. Darja, R., Tatjana, R., Alenka, P.-U. (2013). Alenka Auxetic Textiles. Acta Chim. Slov., 60, 715–723.
  6. Malkin, A. Ja., Askadskij, A. A., Kovriga, V. V. (1978). Metody izmerenija mehanicheskih svojstv polimerov. Moscow: Himija, 336.
  7. Kostrytskiy, V. V. (1990). Methodica i isputatelnaya ystanovka dlya issledovaniya polymernich materialov. Zavodskaya Laboratory, 56 (5), 98–102.
  8. Shi Y., Jiang Y. Realistic (2007). Rendering of Knitwear. Journal of Information and Computing Science, 2, 153-160.
  9. Shi, Y., Jiang, Y. (2007). Realistic Rendering of Knitwear. Journal of Information and Computing Science, 2 (2), 153–160.
  10. De Carvalho, L. H., Cavalcante, J. M. F., d’Almeida, J. R. M. (2006). Comparison of the mechanical behavior of plain weave and plain weft knit jute fabric-polyester-reinforced composites Polymer. Polymer-Plastics Technology and Engineering, 45 (7), 791–797. doi: 10.1080/03602550600611933
  11. Kononova, O., Krasņikovs, A., Dzelzītis, K., Kharkova, G., Vagel, A., Eiduks, M. (2011). Modelling and Experimental Verification of Mechanical Properties of Cotton Knitted Fabric Composites. Estonian Journal of Engineering, 17 (1), 39–50. doi: 10.3176/eng.2011.1.05
  12. Kokoshvyly, S. M. (1978). Methodu dinamicheskich isputaniy zhёstkyh polymernich materialiv. Riga: Zynatne, 182.
  13. Lutsik, R. V., Mentkovskiy, Y. L., Cold, V. P. (1992). Vzaymosvyaz deformatsyonno-relaksatsyonih and teplomassoobmennih procesiv. Kiev: High School, 183.
  14. Perepechko, I. I. (1973). Akustycheskye metodi isledovaniya polymerov. Moscow: Chemistry, 296.
  15. Ferry, J. (1963). Vyazkouprugie svoystva polymerov. Moscow: IL, 536.
  16. Demishonkova, S. A., Pushnov, R. V., Kostritsky, V. V., Artemenko, L. F. (2003). Pristriy dlya vimiru vlastivostey materialiv sho dempfiryut pri vilnih colivanyah. stalemate. 2002042904 Ukraine: IPC G01H1/10/ applicant and owner KNUTD. №53238; applications. 11.04.2002; prints. 15.01.2003, Bull. № 1.
  17. Davis, V. M., Macosko, C. W. (1977). A Forsed Torsional Oscillator for Dynamic Mechanical Measurements. Polymer Engineering and Science,17 (1), 32–37. doi: 10.1002/pen.760170106
  18. Worth, R. A. (1986). The Dynamic Properties of Glassfiber-reinforced polypropylene subjected to pure bending. Polymer Engineering and Science, 26 (19), 1293–1296. doi: 10.1002/pen.760261902
  19. Demishonkova, S. A., Kostritsky, V. V., Artemenko, L. F., Skiba, M. E., (2008). Metodi interpretacii vyazcopruznih vlastivostey polimernih, shkiryanih ta tekstilnih materialov. Bulletin KNUTD, 4, 5–18.
  20. Demishonkova, S. A., Artemenko, L. F., Kostritsky, V. V. (2013). Prognozuvanya vyazcopruznih vlastivostey tekstilnih materialov. Bulletin KNUTD, 3, 7–12
  21. Kenyh, J. (1982). Noveyshye instrumental`ny'j methodi isledovaniya structure polymerov. Moscow: Mir, 264.

Published

2014-12-19

How to Cite

Демішонкова, С. А. (2014). Longitudinal resonance vibrations in determining dynamic viscoelastic properties of textile materials. Eastern-European Journal of Enterprise Technologies, 6(5(72), 52–58. https://doi.org/10.15587/1729-4061.2014.31202

Issue

Section

Applied physics