The influence of an object surface on measuring geometric dimensions in digital optical microscopy

Authors

  • Ольга Миколаївна Маркіна National Technical University of Ukraine «Kyiv Polytechnic Institute» Prosp.Peremohy 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4406-1644
  • Олена Ігорівна Сингаївська V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41; Kyiv; Ukraine; 03028, Ukraine
  • Володимир Петрович Маслов V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41; Kyiv; Ukraine; 03028, Ukraine
  • Наталія Володимирівна Качур V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41; Kyiv; Ukraine; 03028, Ukraine https://orcid.org/0000-0001-6868-8452

DOI:

https://doi.org/10.15587/1729-4061.2014.31948

Keywords:

micrometer object, digital optical microscopy, geometric dimensions

Abstract

The paper presents experimental findings on measuring metrological parameters of LOMO projections obtained with an atomic force microscope. The research has proved that gauge-producing technologies that consist in mechanical mirror cutting result in flood coating. The floods obscure the position of the marker point in the program of the coordinates that outline object dimensions. We have determined that, with equal deviations from the focus, the biggest measurement error is observed while using a LOMO gauge on the projection. The experiment has proved that, under the same conditions of the experiment, a gauge on LOMO transmission (photolithography technology) and a 2D Bruker projection gauge, which is produced by means of electronic lithography, cause much smaller measurement errors. This should be taken into account while choosing a microscope focus gauge.

Author Biographies

Ольга Миколаївна Маркіна, National Technical University of Ukraine «Kyiv Polytechnic Institute» Prosp.Peremohy 37, Kyiv, Ukraine, 03056

Senior lecturer

Scientific, analytic and ecological instruments and systems

Олена Ігорівна Сингаївська, V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41; Kyiv; Ukraine; 03028

Engeneer

Department of Electron probe methods of structural and elemental analysis of semiconductor materials and systems

Володимир Петрович Маслов, V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41; Kyiv; Ukraine; 03028

Head of Department; Senior Researcher; Dr. Sc. (Thechn)

Department of Physics and technological bases of sensory materials

Наталія Володимирівна Качур, V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41; Kyiv; Ukraine; 03028

Junior Researcher

Department of Physics and technological bases of sensory materials

References

  1. Gorelik; S. L.; Kats; B. M.; Kivrin; V. I. (1980). Televizionnyie izmeritelnyie sistemyi. Svyaz; 168.
  2. Porev; V.; Markina; O.; Aginskyy; Y. (2013). Television information measurement systems for linear dimension measuring. Eastern-European Journal of Enterprise Technologies; 2 (10); 59–62. Available at: http://journals.uran.ua/eejet/article/view/12757/10630
  3. Markina; O. (2014). Sposib Markinoyi VimIryuvannya MIkroperemIschen. 22.10.2013; assignee. Patent 89021. 10 Apr. 2014. Print.
  4. Yakimets; S.; Tibin; S. (2010). Povyishenie tochnosti izmereniya diametra slitka kremniya televizonnyim metodom. Visnik KDPU Im. Mihayla Ostrogradskogo; 1 (60); 66–69.
  5. Lvov; V.; Andrieiev; A. (2010). Quasiinvariant Automatic Control Digital Systems of Inertia Objects. MaterIali MIzhnarodnoYi KonferentsIYi TCSET'2010. LvIv-Slavsko; UkraYina; 79.
  6. Vvedenskiy; S.; Zaharchenko; A.; Troitskiy; V. (2005). Izmernie submikronnyih razmerov. Opticheskiy mikroskop s nekogerentnyim osvescheniem. Elektronika: Nauka; Tehnologiya; Biznes; 1; 59–61.
  7. Gavrilenko; V.; Novikov; Y.; Rakov; A.; Todua; P. (2008). Test-ob'ektyi s pryamougolnyim i trapetsievidnyim profilyami relefa dlya rastrovoy elektronnoy i atomno-silovoy mikroskopii. Nanoindustriya; 4; 24–30.
  8. Heather; P.; Germer; T.; Cresswell; M.; Allen; R.; Dixson; R.; Bishop; M. (2007). Modeling and Analysis of Scatterometry Signatures for Optical Critical Dimension Reference Material Applications. Proceedings of the 2007 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics. NIST in Gaithersburg; 392–396.
  9. Germer; T. (2007). Effect of line and trench profile variation on specular and diffuse reflectance from a periodic structure. Journal of the Optical Society of America A; 24; 696–701. doi: 10.1364/josaa.24.000696
  10. Lytvyn; P. (2014). Probe Microscopy in Practical Diagnostic: 3D Topography Imaging and Nanometrology. Functional Nanomaterials and Devices for Electronics; Sensors and Energy Harvesting. Switzerland: Springer International Publishing; 179–219. doi: 10.1007/978-3-319-08804-4_10

Published

2014-12-19

How to Cite

Маркіна, О. М., Сингаївська, О. І., Маслов, В. П., & Качур, Н. В. (2014). The influence of an object surface on measuring geometric dimensions in digital optical microscopy. Eastern-European Journal of Enterprise Technologies, 6(5(72), 59–64. https://doi.org/10.15587/1729-4061.2014.31948

Issue

Section

Applied physics