Transformation of the equation of motion in stresses for an incomressible fluid

Виталий Александрович Бударин


The paper considers transformation of the equation of motion in stresses for an incompressible Newtonian fluid. The aim of the transformation is to obtain more detailed equations that account for the impact of vortex (rotational) and linear (forward) flows on the process of viscous friction. The transformation method is based on adding zero to the expressions for shear stresses with subsequent distinguishing of rotor velocity function and derivatives characterizing the linear flow. This approach as a form of recording the original equation does not require any additional restrictions. The transformation has resulted in new systems of equations for viscous vortex and vortex-free flows as well as three-dimensional vortex. The obtained equations allow obtaining the known exact solution for the laminar flow (Poiseuille’s formula) and Euler’s differential equation for an ideal fluid. We have shown that the Navier-Stokes equation is a separate case of a more general equation for Newtonian fluid motion. The obtained equations and connections between them allow improvement of the mathematical description of the incompressible fluid flow.


general equation; Navier-Stokes; Euler; Poiseuille; vortex-free flow; 3D vortex


Goldshtik, M. A. (1989). Viscous flows with paradoxical properties. Novosibirsk: Nauka, 336.

Booth, D. A. (1991). Energy storage. Moscow: Energoatomizdat, 400.

Mathieu, J. (2000). An Introduction to Turbulent Flow. Cambridge University Press, 374.

Frick, P. G. (1998). Turbulence: models and approaches. Perm: PSTU, 108.

Loitsyansky, L. G. (1978). Mechanics of Liguid and Gas. Moscow: Science, 736.

Shterenliht, D. V. (1991). Hydraulics: Training. Moscow: Energoatomizdat, 351.

Girgidov, A. D. (2007). Gas and fluid mechanics (hydraulics). SPb.: Federal Agency for Education, 544.

Kukudzhanov, V. N. (2008). Computational continuum mechanics. Moscow: Fizmatlit, 320.

Anderson, Jr. (1995). Computational Fluid Dynamics. The basics with applications. McGraw-Hill Science, 574.

Genick, B.-M. (2013). Basic of Fluid Mechanics. Chicago, 604.

Belyaev, N. M. (1987).Thermodynamics. Kiev: VSch, 344.

Munson, B. R. (2009). Fundamentals of fluid mechanics. Wiley, 730.

GOST Style Citations

1. Гольдштик, М. А. Bязкие течения с парадоксальными свойствами [Текст] / М. А. Гольдштик, В. Н. Штерн, Н. И. Яворский. - Новосибирск: Наука, 1989. - 336 с.

2. Бут, Д. А. Накопители энергии [Текст] / Д. А. Бут.  - М.: Энергоатомиздат, 1991. – 400 с.

 3. Mathieu,J. An Introduction to Turbulent Flow. [Text]/ J.MATHIEU.—Cambridge University Press, 2000. - 374 p.

4. Фрик, П.Г. Турбулентность: модели и подходы. [Текст]/ П.Г. Фрик. — Пермь, ПГТУ, 1998. - 108 с.

5. Лойцянский, Л. Г. Механика жидкости и газа [Текст] / Л. Г. Лойцянский. — М.: Наука, 1978. - 756 с.

6. Штеренлихт, Д. В. Гидравлика [Текст] / Д. В. Штеренлихт. — М.: Энергоатомиздат, 1991. - 351 с.

7. Гиргидов, А. Д. Механика жидкостей и газа (гидравлика). [Текст] / А. Д. Гиргидов. - СПб.: Федеральное агентство по образованию, 2007. - 544 с.

8. Кукуджанов, В. Н. Вычислительная механика сплошных сред. [Текст] / В. Н. Кукуджанов. - М.: Физматлит АНО , 2008. - 320 с.

9. Anderson, Jr. Computational Fluid Dynamics. The basics with applications [Text] / Jr. Anderson. - McGraw-Hill Science, 1995. - 574 p.

10. Genick, B.-M. Basic of Fluid Mechanics [Text] / B.-M. Genick. - Chicago: 2013. - 604 p.

11. Беляев, Н. М. Термодинамика [Текст] / Н. М. Беляев. - К.: Вища шк. 1987. - 344 с.

12. Munson, B. R. Fundamentals of fluid mechanics [Text] / B. R. Munson. - Wiley, 2009. - 730 p.

Copyright (c) 2015 Виталий Александрович Бударин

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061