DOI: https://doi.org/10.15587/1729-4061.2015.39999

Simulation of the chamfering process in dies

Сергей Викторович Шлык, Владимир Леонидович Хорольский, Мария Игоревна Наумова

Abstract


Bevel cutting in special dies on the pressing equipment is a progressive method of preparing edges for welding. The basic methods of bevel cutting and chamfering before welding were considered. The principal difference between the schemes is the original arrangement of workpieces, geometry of the cutting edge and motion direction of the punch.

The purpose of the study is to determine the stress-strain state of the system "cutter-workpiece" and select a rational cutting scheme in terms of the smallest loads, acting on the tool.

A comparison of the stress-strain state parameters under various chamfering schemes was performed by modeling using the software package ANSYS/LS-DYNA. For this, calculation schemes of the models were drawn, optimal parameters of the model parts and types of their contact interaction were determined. The result of the calculations is equivalent stress-strain distribution diagrams, graphics of the stress change on the cutting edge of the tool in time, and chamfering process visualization.

The results suggest that in terms of the stability of die tooling and quality of the design elements, cutting scheme with a punch, which performs translational motion simultaneously in two directions - horizontal and vertical is more rational. As a result of numerical simulation, it was found that the stresses on the cutting edge of the punch are reduced by more than 400 MPa and workpiece distortion and burr formation are eliminated when cutting using the proposed scheme.

The proposed cutting scheme was implemented in the design of the die, used in the production cycle of PJSC "Krukovka Carriages". Persistence of the most loaded nodes of the die is hundreds of times higher than previously used die tooling.


Keywords


cutting; die; stress-strain state; sliding punch; finite element method

References


Gyrdymov, G. P., Zilburg, L. I., Savcenko, I. D., Shalyshyn, V. D. (1990). Avtomatizatsiya tehnologicheskoy podgotovki zagotovitelnogo proizvodstva. Lviv: Mashinostroyeniye, 350.

Dragobetskiy, V. V., Martsynyuk, O. B. (2005). Sopostavleniye energeticheskikh parametrov, protsessov termicheskoy i mekhanicheskoy rezki listovykh zagotovok. Visnyk KDPU, 30, 64–66.

Dragobetskiy V. V., Martsynyuk O. B. Naumove Ye. A. Pirogov D. L. (2008). Visnyk Skhidnoukrayinskogo natsionalnogo universytetu imeni Volodymyra Dalya, 124,1, 85 – 88.

Dragobetskiy, V. V., Martsynyuk, O. B. (2005). Novyye metody snizheniya raboty plasticheskoy deformatsii v operatsiyakh probivki i vyrubki. Visnyk KDPU, 30, 67–69.

Cleary, P. W., Prakash, M., Das, R., Ha, J. (2012). Modelling of metal forging using SPH. Applied Mathematical Modelling, 36 (8), 3836–3855. doi: 10.1016/j.apm.2011.11.019

Gerber, B., Yang, T. C. (2008). Making an impact. ANSYS Advantage, 2 (4), 40–42.

Tynyanyi, A. F. (2004). Chislennoye modelirovaniye kontaktnoy zadachi v ramkakh kvazistaticheskogo uprugoplasticheskogo deformirovaniya v pakete AnSYS/LS-DYNA. Neftegazovoye delo, 1.

Ilyushkin, M. V. (2012). Modelirovaniye protsessov obrabotki davleniyem v programme ANSYS/LS-DYNA: uchebno-metodicheskoye posobiye. Ulyanovsk: UlGU, 1, 91.

Kryvoruchko, D. V., Zaloga, V. O., Korbach, V. G. (2009). Osnovy 3D-modelyuvannya protsesiv mekhanichnoyi obrobky metodom skinchenykh elementiv: navchalnyy posibnyk. Sumy: SumDU, 1, 208.

MatWeb, Your Source for Materials Information. Available at: http://www.matweb.com/

Jones, N., Griffin, R. N., Van Duzer, R. E. (1971). An experimental study into the dynamic plastic behaviour of wide beams and rectangular plates. International Journal of Mechanical Sciences, 13 (8), 721–735. doi: 10.1016/0020-7403(71)90072-5

Jones, N., Soares, C. G. (1978). Higher modal dynamic plastic behavior of beams loaded impulsively. International Journal of Mechanical Sciences, 20 (3), 135–147. doi: 10.1016/0020-7403(78)90001-2

Sturgess, C. E., Jones, M. (1971). Estimation of dynamic forces in high-speed compression using a free-flight impact forging device. International Journal of Mechanical Sciences, 13 (4), 309–322. doi: 10.1016/0020-7403(71)90056-7

Jones, N., Marcilio, A. (2010). Post-Failure Behaviour of Impulsively Loaded Circular Plates. International Journal of Mechanical Sciences, 52 (5), 706–715. doi: 10.1016/j.ijmecsci.2009.11.014


GOST Style Citations


1. Гырдымов, Г. П. Автоматизация технологической подготовки заготовительного производства [Текст] / Г. П. Гырдымов, Л. И. Зильбург, И. Д. Савченко, В. Н. Шалышин. – Л.: Машиностроение, 1990. – 350 с.

2. Драгобецкий, В. В. Сопоставление энергетических параметров, процессов термической и механической резки листовых заготовок [Текст] / В. В. Драгобецкий, О. Б. Марцинюк // Вісник КДПУ. – 2005. – Вип. 1 (30). – С. 64–66.

3. Драгобецкий, В. В. Количественный анализ процесса резки листового металла в штампах [Текст] / В. В. Драгобецкий, О. Б. Марцинюк, Е. А. Наумова, Д. Л. Пирогов // Вісник Східноукраїнського національного університету імені Володимира Даля. – 2008. – № 6 (124), Ч. 1. – С. 85–88.

4. Драгобецкий, В. В. Новые методы снижения работы пластической деформации в операциях пробивки и вырубки [Текст] / В. В. Драгобецкий, О. Б. Марцинюк // Вісник КДПУ. – 2005. – Вип. 1 (30). – С. 67–69.

5. Cleary, P. W. Modelling of Metal Forging Using SPH [Text] / P. W. Cleary, M. Prakash, R. Das, J. Ha // Applied Mathematical Modeling. – 2012. – Vol. 36, Issue 8. – P. 3836–3855. doi: 10.1016/j.apm.2011.11.019 

6. Gerber, B. Making an impact. [Text] / B. Gerber, T. C. Yang // ANSYS Advantage. – 2008. – Vol. 2, Issue 4. – P. 40–42.

7. Тыняный, А. Ф. Численное моделирование контактной задачи в рамках квазистатического упругопластического деформирования в пакете AnSYS/LS-DYNA [Текст] / А. Ф. Тыняный // Журнал «Нефтегазовое дело». – 2004. – Вып. 1.

8. Илюшкин, М. В. Моделирование процессов обработки металлов давлением в программе ANSYS/LS-DYNA. Учебно-методическое пособие [Текст] / М. В. Илюшкин. – Ульяновск: УлГУ, 2012 – 91 с.

9. Криворучко, Д. В. Основи 3D-моделювання процесів механічної обробки методом скінчених елементів: навчальний посібник [Текст] / Д. В. Криворучко, В. О. Залога, В. Г. Корбач. – Суми: Вид-во СумДУ, 2009. – 208 с.

10. MatWeb, Your Source for Materials Information [Electronic resource] / Available at: http://www.matweb.com/

11. Jones, N. An Experimental Study Into the Dynamic Plastic Behaviour of Wide Beams and Rectangular Plates [Text] / N. Jones, R. N. Griffin, R. E. Van Duzer // International Journal of Mechanical Sciences. – 1971. – Vol. 13, Issue 8. – P. 721–735. doi: 10.1016/0020-7403(71)90072-5 

12. Jones, N. Higher Modal Dynamic Plastic Bahaviour of Beams Loaded Impulsively [Text] / N. Jones, C. G. Soares // International Journal of Mechanical Sciences. – 1978. – Vol. 20, Issue 3. – P. 35–147. doi: 10.1016/0020-7403(78)90001-2 

13. Sturgess, C. E. N. Estimation of Dynamic Forces In High-Speed Compression Using a Free-Flight Impact Forging Device [Text] / C. E. N. Sturgess, M. G. Jones // International Journal of Mechanical Sciences. – 1971. – Vol. 13, Issue 4. – P. 309–322. doi: 10.1016/0020-7403(71)90056-7 

14. Jones, N. Post-Failure Behaviour of Impulsively Loaded Circular Plates [Text] / N. Jones, M. Alves // International Journal of Mechanical Sciences. – 2010. – Vol. 52, Issue 5. – P. 706–715. doi: 10.1016/j.ijmecsci.2009.11.014 







Copyright (c) 2015 Сергей Викторович Шлык, Владимир Леонидович Хорольский, Мария Игоревна Наумова

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061