DOI: https://doi.org/10.15587/1729-4061.2015.40777

Devising direct regular algorithms of computational potential theory with collocation points inside the solution domain

Дмитрий Васильевич Евдокимов

Abstract


Our attempts to systemize and classify the most popular direct collocation algorithms of computational potential theory have resulted in distinguishing two families of algorithms that have not yet been properly researched or used in computational practice. The first family of algorithms is the method of boundary elements with collocation points inside the solution area, while the second one is a direct regular method of discrete singularities with collocation points inside and outside the solution area. Using decomposition of the desired function in the Taylor series along the normal to the border in the vicinity of collocation, we have modified the considered algorithms and obtained significant advantages in comparison with the respective traditional algorithms.

The presented analysis was based on the plane boundary value problems for the Laplace equation. Advantages of the suggested algorithms result from their regular structure that allows to exclude the computation of singular integrals and further program implementation. In addition, the structure permits integration over the real (non-approximated) boundary, which improves the computation accuracy. Eventually, the obtained boundary integral equations are regular integral equations of the second type, which secures their stable solution.

The conclusion is proved by several series of test computation with the use three selected analytically set test functions. The suggested approach can be easily applied to solving broad classes of boundary value problems for differential equations in mathematical physics. The suggested algorithms can be mainly applied in computational mechanics.


Keywords


regular boundary integral equations; the method of boundary elements/boundary element method; the method of discrete singularities/discrete singularities method

References


Banerjee, P. K., Batterfield, R. (1981). Boundary Element Methods in Engineering Science. London, New York: McGraw Hill, 494.

Brebbia, C. A., Telles, J. C. F., Wrobel, L. C. (1984). Boundary Element Techniques. Berlin, Heidelberg. Springer-Verlag, 524.

Mustoe, G. G. W. (1980). A combination of the finite element and boundary integral procedures. Swansea University, United Kingdom.

Veryuzhskiy, Iu. V. (1978). Potential Numerical Methods in Some Problems of Applied Mechanics. Kiev. Vyscha Shkola, 178.

Kupradze, V. D. (1965). Potential Methods in the Theory of Elasticity. New York, Daniel Davey, 525.

Belotserkovskiy, S. M., Lifanov, I. K. (1985). Numerical Methods in Singular Integral Equation. Moscow. Nauka, 256.

Lifanov, I. K. (1995). Singular Integral Equation Method and Numerical Experiment. Moscow. Nauka, 520.

Dovgiy, S. A., Lifanov, I. K. (2002). Solution Methods for Integral Equations. Kiev. Naukova dumka, 343.

Zhao, H., Isfahani, A. H. G., Olson, L. N., Freund J. B. (2010). A spectral boundary integral method for flowing blood cells. Journal of Computational Physics, 229 (10), 3726–3744. doi: 10.1016/j.jcp.2010.01.024

Bazhlekov, I. B., Anderson, P. D., Meijer, H. E. H. (2004). Nonsingular boundary integral method for deformable drops in viscous flows. Physics of Fluids, 16 (4), 1060–1081. doi: 10.1063/1.1648639

Klaseboer, E., Sun, Q., Chan, D. Y. C. (2012). Non-singular boundary integral methods for fluid mechanics applications. Journal of Fluid Mechanics, 696, 468–478. doi: 10.1017/jfm.2012.71

Wendland, W. L., Cakoni, F., Hsiao, G. C. (2005). On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation. Complex Variables, 50 (7-11), 681–696. doi: 10.1080/02781070500087394

Brazaluk, Iu. V. (2013). Calculation of hydrodynamic interaction in superfluidic liquid by computational potential theory methods. Eastern-European Journal of Enterprise Technologies, 5/5(65), 6–11. Available at: http://journals.uran.ua/eejet/article/view/18102/15849

Brazaluk, Iu. V., Yevdokymov, D. V., Reshniak, V. G. (2012). Calculation of flow around complex hydrodynamic configurations by combined boundary element and discrete vortex method. Bulletin of Dniepropetrovsk University, Series Mechanics, 16 (1), 50–67.

Brazaluk, Iu. V., Yevdokymov, D. V., Poliakov, M. V. (2013). Numerical realization of generalized Blokh-Ginevskiy's method. Bulletin of Dniepropetrovsk University, Series Mechanics, 17 (1), 35–51.

Aparinov, A. A., Setuha, A. V. (2013). On parallelizing of computations in vortex method of aerodynamic problem solutions. Computational Methods and Programming, 14 (1), 406–418.

Aparinov, A. A., Setuha, A. V. (2010). On application of mosaic-backbone approximations under modeling of three-dimensional vortical flows by vorical segments. Journal of Computational Mathematics and Mathematical Physics, 50 (5), 937–948.

Gandel, Yu. V. (2010). Boundary-Value Problems for Helmholtz Equation and their Discrete Mathematical Models. Journal of Mathematical Sciences, 171 (1), 74–88. doi: 10.1007/s10958-010-0127-3

Gutnikov, V. A. Kiryakin, V. Yu., Lifanov, I. K., Setuha, A. V., Stavtsev S. L. (2007). On numerical solution two-dimensional hypersingular integral equation and on sound propagation in town building. Journal of Computational Mathematics and Mathematical Physics, 47 (12), 2088–2100.

Brazaluk, Iu. V., Yevdokymov, D. V., Poliakov, M. V. (2005). Joint application of small parameter method and boundary element method for numerical solution of elliptic problems with small disturbances. Bulletin of Kharkov National University. Series "Mathematical modeling. Information technologies. Automatic control systems", 5 (703), 50–66.

Yevdokymov, D. V., Durban, D.; Pearson A. R. J. (Ed.) (1997). Boundary element and discrete vortices method for ideal fluid flow calculations. Non-linear singularities in deformation and flow. Proceeding of IUTAM Symposium held in Haifa, Israel. Kluwer Academic Publisher, 217–230. doi: 10.1007/978-94-011-4736-1_20

Yevdokymov, D. V. (1997). On one variant of regular boundary element method. Bulletin of Dniepropetrovsk University. Mechanics. 2 (1), 150–156.

Tassel, D. V. (1978). Program Stile, Design, Efficiency, Debugging and Testing. New Jersey. Prentice Hall, 332.


GOST Style Citations


1. Бенерджи, П. Метод граничных элементов в прикладных науках [Текст] / П. Бенерджи, Р. Баттерфилд.М.: Мир, 1984. – 494 с.

2, Бреббия, К. Методы граничных элементов [Текст] / К. Бреббия, Ж. Теллес, Л. Вроубел. – М.: Мир, 1987. – 524 с.

3. Mustoe, G. G. W. A combination of the finite element and boundary integral procedures [Text]: PhD thesis / G. G. W. Mustoe. – Swansea University, United Kingdom, 1980.

4. Верюжский, Ю. В. Численные методы потенциала в некоторых задачах прикладной механики [Текст] / Ю. В. Верюжский. – Киев: “Вища школа”, 1978. – 184 с.

5. Купрадзе, В. Д. Методы потенциала в теории упругости [Текст] / В. Д. Купрадзе. – М.: Физматгиз, 1963. – 525 с.

6. Белоцерковский, С. М. Численные методы в сингулярных интегральных уравнениях [Текст] / С. М. Белоцерковский, И. К. Лифанов. – М.: Наука, 1985. – 256 с.

7. Лифанов, И. К. Метод сингулярных интегральных уравнений и численный эксперимент [Текст] / И. К. Лифанов. – М.: Наука, 1995. – 520 с.

8. Довгий, С. А. Методы решения интегральных уравнений [Текст] / С. А. Довгий, И. К. Лифанов. – Киев: Наукова думка, 2002. – 343 с.

9. Zhao, H. A spectral boundary integral method for flowing blood cells [Text] / H. Zhao, A. H. G. Isfahani, L. N. Olson, J. B. Freund // Journal of Computational Physics. – 2010. – Vol. 229, Issue 10. – P. 3726–3744. doi: 10.1016/j.jcp.2010.01.024

10. Bazhlekov, I. B. Nonsingular boundary integral method for deformable drops in viscous flows [Text] / I. B. Bazhlekov, P. D. Anderson, H. E. H. Meijer // Physics of Fluids. – 2004. – Vol. 16, Issue 4. P. 1060–1081. doi: 10.1063/1.1648639

11. Klaseboer, E. Non-singular boundary integral methods for fluid mechanics applications [Text] / E. Klaseboer, Q. Sun, D. Y. C. Chan // Journal of Fluid Mechanics. 2012. Vol. 696. P. 468–478. doi: 10.1017/jfm.2012.71

12. Wendland, W. L. On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation [Text] / W. L. Wendland, F. Cakoni, G. C. Hsiao // Complex Variables. – 2005. – Vol. 50, Issue 7-11. P. 681–696. doi: 10.1080/02781070500087394

13. Бразалук, Ю. В. Расчет гидродинамического взаимодействия в сверхтекучей жидкости методами вычислительной теории потенциала [Текст] / Ю. В. Бразалук // Восточно-Европейский журнал передовых технологий. – 2013. – Т. 5, № 5 (65). – С. 6–11. – Режим доступа: http://journals.uran.ua/eejet/article/view/18102/15849

14. Бразалук, Ю. В. Расчет обтекания сложных гидродинамических конфигураций комбинированным методом граничных элементов и дискретных вихрей [Текст] / Ю. В. Бразалук, Д. В. Евдокимов, В. Г. Решняк // Вісн. Дніпропетровського університету. Серія Механіка. – 2012. – Вип. 16, Т. 1. – С. 50–67.

15. Бразалук, Ю. В. Численная реализация обобщенного метода Блоха-Гиневского [Текст] / Ю. В. Бразалук, Д. В. Евдокимов, Н. В. Поляков // Вісник Дніпропетровського університету. Серія Механіка. – 2013. – Вип. 17, Т. 1. – С. 35–51.

16. Апаринов, А. А. О распараллеливании вычислений в вихревом методе решения задач аэродинамики [Текст] / А. А. Апаринов, А. В. Сетуха // Выч. мет. программирование. – 2013. – Т. 14, № 1. – С. 406–418.

17. Апаринов, А. А. О применении метода мозаично-скелетонных аппроксимаций при моделировании трехмерных вихревых течений вихревыми отрезками [Текст] / А. А. Апаринов, А. В. Сетуха // Ж. вычисл. матем. и матем. физ. – 2010. – Т. 50, №. 5. – С. 937–948.

18. Gandel, Yu. V. Boundary-Value Problems for Helmholtz Equation and their Discrete Mathematical Models [Text] / Yu. V. Gandel // Journal of Mathematical Sciences. – 2010. – Vol. 171, Issue 1. – P. 74–88. doi: 10.1007/s10958-010-0127-3 

19. Гутников, В. А. О численном решении двумерного гиперсингулярного интегрального уравнения и о распространении звука в городской застройке [Текст] / В. А. Гутников, В. Ю. Кирякин, И. К. Лифанов, А. В. Сетуха, С. Л. Ставцев // Ж. вычисл. матем. и матем. физ. – 2007. – Т. 47, №. 12. – С. 2088–2100.

20. Бразалук, Ю. В. Совместное применение метода малого параметра и метода граничных элементов для численного решения эллиптических задач с малыми возмущениями [Текст] / Ю. В. Бразалук, Д. В. Евдокимов, Н. В. Поляков // Вестник Харк. нац. ун-та. Серия «Математическое моделирование. Информационные технологии. Автоматизированные системы управления». 2005.Вып. 5, № 703. С. 50–66.

21. Yevdokymov, D. V. Boundary element and discrete vortices method for ideal fluid flow calculations [Text] / D. V. Yevdokymov, D. Durban; A. R. J. Pearson (Ed.) // Non-linear singularities in deformation and flow. Proceeding of IUTAM Symposium held in Haifa, Israel. – Kluwer Academic Publisher, 1997. – P. 217–230. doi: 10.1007/978-94-011-4736-1_20 

22. Евдокимов, Д. В. Об одном варианте регулярного метода граничных элементов [Текст] / Д. В. Евдокимов // Вісник Дніпропетровського університету. Механіка.1999. Вип. 2, Т. 1. – С. 150–156.

23. Ван Тассел, Д. Стиль, разработка, эффективность, отладка и испытание программ [Текст] / Д. Ван Тассел.М.: Мир, 1985.332 с.







Copyright (c) 2015 Дмитрий Васильевич Евдокимов

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061