Development of the mutual influence model of laser gyroscope dithers in sins

Authors

  • Сергій Вікторович Іванов National technical university of Ukraine “Kyiv polytechnic institute” Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-3001-2451
  • Богдан Васильович Воловик National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy avenue, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-8655-8819
  • Ігор Сергійович Слабухін National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy avenue, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-2622-6759

DOI:

https://doi.org/10.15587/1729-4061.2015.42444

Keywords:

laser gyroscope, dither, mathematical model, strapdown inertial navigation system

Abstract

The problem of the mutual influence of laser gyroscope dithers in SINS is underinvestigated. No other author has developed the model of the processes, occurring in the SU (sensing unit) during interaction of dithers, which would allow to examine the unit operation  at the complex vibration of dithers and take into account the design features of real SINS.

In the paper, the general structure of the mutual influence mathematical model of laser gyroscope dithers in SINS was obtained, and the parameters of the model for a real unit were identified. The mathematical model allows to evaluate linear and angular displacements of each LG (laser gyroscope) from internal vibroimpacts, including a noise component during the SINS SU operation. Knowing the displacement data, SU systematic errors, including conical motion error and measurement axes displacement error can be estimated. The model significantly reduces the simulation time compared to simulations using the finite element method.

The work can be used as a guide for obtaining and identifying the mutual influence model of several physical bodies placed on one elastic object.

Author Biographies

Сергій Вікторович Іванов, National technical university of Ukraine “Kyiv polytechnic institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD

Research institute of telecommunications, head of the research department

Богдан Васильович Воловик, National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy avenue, 37, Kyiv, Ukraine, 03056

graduate student

Department of Aircraft Instruments and Control Systems

Ігор Сергійович Слабухін, National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremohy avenue, 37, Kyiv, Ukraine, 03056

Department of Aircraft Instruments and Control Systems

References

  1. Aronowitz F. (1999). Fundamentals of the ring laser gyro. Optical gyros and their application, 3.1–3.45.
  2. Leonets, A. A. (2001). Rezultaty issledovaniy vzaimnogo vliyaniya vibropodvesov lazernyh giroskopov v besplatformennyh inertsialnyh navigatsionnyh sistemah [The results of research of mutual influence of laser gyros dither in strapdown inertial navigation systems]. Proceedings of the III International scientific-technical conference " Gyro technology, navigation and design of mobile objects", 198–206. Available at: http://www.ins-gps-team.com.ua/publications.files/publication_7_R.html [in Russian]
  3. Wang, K., Yan, L., Gu, Q. (2005). The influence of noise on output of Ring Laser Gyroscope. Sensors and Actuators, 119 (1), 75–83. doi: 10.1016/j.sna.2004.09.006
  4. Enin, V. (2013). Pogreshnosty lazernogo giroskopa pri razlichnyh skhemah vozbuzhdeniya vibropodstavki s "oshumleniem"[ Laser gyro errors at different excitation dither schemes with noise]. Inzhenernyy vestnik : elektronnyy nauchno - tehnicheskiy journal, 12, 599–612. [in Russian]
  5. Chen, G., Rui, X., Yang, F., Zhang, J., Zhou, Q. (2013). Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System. Advances in Mechanical Engineering, 5 (0), 854583–854583. doi: 10.1155/2013/854583
  6. Ma, L., Rui, X., Yang, F., Rong, B. (2009). Power spectrum analysis for laser gyro damping system of strapdown inertial navigation. Journal of Vibration Engineering, 22 (6), 603–607.
  7. Yang, F. F., Rui, X. T., Ma, L. (2008). Dynamical model and simulation of laser gyro strapdown inertial navigation system. Journal of Chinese Inertial Technology, 16 (3), 301–305.
  8. Lahham, J. I., Wigent, D. J., Coleman, A. L. (2000). Tuned support structure for structure-borne noise reduction of inertial navigation with dithered ring laser gyros. Position, Location and Navigation Symposium. PLANS. San Diego (USA), 419–428. doi: 10.1109/plans.2000.838334
  9. Kvetkin, G. A. (2011). Instrumentalnye pogreshnosti izmeritelnogo bloka na baze triady lazernyh giroskopov pri dinamicheskih vozmuscheniyah[Instrumental error of measuring unit based on laser gyroscopes triad under dynamic disturbances]. Bauman Moscow State Technical University, 208. [in Russian]
  10. Bruyako, V. A. (2010). Inzhenernyy analiz v ANSYS Workbench [Engineering analysis in ANSYS Workbench]. Samara: Samara State Technical University, 271. [in Russian]
  11. Grop, D. (1979). Metody identifikatsii system [Methods of system identification]. Moscow: Mir, 304. [in Russian]
  12. Dyakonov, V. P., Kruglov, V. V. (2001). MATLAB. Analiz , identifikatsiya i modelirovaniie system. Spetsialnyy spravochnik[Analysis, identification and modeling systems. Special reference]. St. Pb: Peter, 480. [in Russian]
  13. Ljung, L. (2009). Experiments With Identification of Continuous-Time Models. Proceedings of the 15th IFAC Symposium on System Identification, 9. doi: 10.3182/20090706-3-fr-2004.00195

Published

2015-06-24

How to Cite

Іванов, С. В., Воловик, Б. В., & Слабухін, І. С. (2015). Development of the mutual influence model of laser gyroscope dithers in sins. Eastern-European Journal of Enterprise Technologies, 3(7(75), 42–47. https://doi.org/10.15587/1729-4061.2015.42444

Issue

Section

Applied mechanics