DOI: https://doi.org/10.15587/1729-4061.2015.46578

Development of the strain–rate and temperature sensitive theory of microstrain

Инна Сергеевна Онищенко, Юрий Абрамович Черняков, Владимир Петрович Шнейдер

Abstract


Plastic flow, caused by the dislocation glide is closely related to the thermal activation mechanism in a wide range of strain rates. On the other hand, the high-rate plastic strain may lead to an apparent increase in temperature. Therefore, the influence of strain rate and temperature are usually related and should be considered both in the study of the materials behavior, depending on the strain rate.

Over the past three decades, this approach has been implemented in a number of the continuum and physical theories of thermoviscoelasticity that lead to rather complicated constitutive relations and their use is restricted mainly by simple loading processes.

A generalized version of the theory of microstrain, which is sufficiently simple and suitable to describe the finite visco-plastic strain in a wide range of strain rates and temperatures was proposed. Constitutive relations of the theory that are applicable not only under simple, but also complex loading were built. The algorithm for their numerical implementation, which allows to take into account not only the plurality of active microplastic strains but also possibility to set an arbitrary loading trajectory was proposed. A comparison of the charts of uniaxial tension at various strain rates obtained using the theory of microstrain with the known experimental data was performed. It is shown that the proposed option allows to achieve a satisfactory description of experiments with a small number of material constants, which simplifies the calibration of the theory.

The results significantly extend the capabilities of the theory of microstrain and open up prospects for its use to describe the viscoplastic flow and solve applied tasks under complex loading.

Keywords


theory of microstrain; finite strain; viscoplasticity; strain rate; temperature

References


Taylor, G. I. (1938). Plastic strain in metals. J. Inst. Metals, 62, 307–325.

Zener, C., Hollomon, J. H. (1944). Effect of strain rate upon plastic flow of steel. J. Appl. Phys., 15, 22–32.

Follansbee, P. S., Kocks, U. F. (1988). A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica, 36 (1), 81–93. doi: 10.1016/0001-6160(88)90030-2

Zerilli, F. J., Armstrong, R. W. (1992). The effect of dislocation drag on the stress-strain behavior of F.C.C. metals. Acta Metallurgica et Materialia, 40 (8), 1803–1808. doi: 10.1016/0956-7151(92)90166-c

Miller, A. K., Krauss, A. S., Krauss, K. (1996). Improvements in the MATMOD equations for modeling solute effects and yield–surface distorsion. Unified Constitutive Laws of Plastic Deformation. Academic Press Inc., 153–227.

Nemat-Nasser, S., Li, Y. (1998). Flow stress of f.c.c. polycrystals with application to OFHC Cu. Acta Materialia, 46 (2), 565–577. doi: 10.1016/s1359-6454(97)00230-9

Khan, A. S., Liang, R. (2000). Behaviors of three BCC metals during non-proportional multi-axial loadings: experiments and modeling. International Journal of Plasticity, 16 (12), 1443–1458. doi: 10.1016/s0749-6419(00)00016-4

Kocks, U. F., Mecking, H. (2003). Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science, 48 (3), 171–273. doi: 10.1016/s0079-6425(02)00003-8

Beyerlein, I. J., Tomé, C. N. (2008). A dislocation-based constitutive law for pure Zr including temperature effects. International Journal of Plasticity, 24 (5), 867–895. doi: 10.1016/j.ijplas.2007.07.017

Chaboche, J. L. (2008). A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24 (10), 1642–1693. doi: 10.1016/j.ijplas.2008.03.009

Rusinek, A., Rodríguez-Martínez, J. A., Klepaczko, J. R., Pęcherski, R. B. (2009). Analysis of thermo-visco-plastic behaviour of six high strength steels. Materials & Design, 30 (5), 1748–1761. doi: 10.1016/j.matdes.2008.07.034

Cai, M.-C., Niu, L.-S., Ma, X.-F., Shi, H.-J. (2010). A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials. Mechanics of Materials, 42 (8), 774–781. doi: 10.1016/j.mechmat.2010.06.006

Grèze, R., Manach, P. Y., Laurent, H., Thuillier, S., Menezes, L. F. (2010). Influence of the temperature on residual stresses and springback effect in an aluminium alloy. International Journal of Mechanical Sciences, 52 (9), 1094–1100. doi: 10.1016/j.ijmecsci.2010.04.008

Gao, C. Y., Zhang, L. C. (2012). Constitutive modelling of plasticity of fcc metals under extremely high strain rates. International Journal of Plasticity, 32-33, 121–133. doi: 10.1016/j.ijplas.2011.12.001

Knezevic, M., McCabe, R. J., Tomé, C. N., Lebensohn, R. A., Chen, S. R., Cady, C. M., Gray III, G. T., Mihaila, B. (2013). Modeling mechanical response and texture evolution of α-uranium as a function of strain rate and temperature using polycrystal plasticity. International Journal of Plasticity, 43, 70–84. doi: 10.1016/j.ijplas.2012.10.011

Hor, A., Morel, F., Lebrun, J.-L., Germain, G. (2013). An experimental investigation of the behaviour of steels over large temperature and strain rate ranges. International Journal of Mechanical Sciences, 67, 108–122. doi: 10.1016/j.ijmecsci.2013.01.003

Novogilov, V. V., Kadashevich, Yu. I., Chernyakov Yu. A. (1985). Teoriia plastichnosti, uchity`vaiushchaia mikrodeformatcii. Journal of Engineering Materials and Technology, 284, 821–823.

Kadashevich, Yu. I., Chernyakov, Yu. A. (1992). Theory of plasticity, taking into account microstresses. Advances in mechanics, 15 (3-4), 3–39.

Chernyakov, Y. A., Polishchuk, A. S., Shneider, V. P. (2011). On extension of the phenomenological approach in the theory of plasticity. Journal of Engineering Mathematics, 78 (1), 55–66. doi: 10.1007/s10665-011-9470-8

Onischenko, I. S., Chernykov, Yu. A., Shneider, V. P. (2014). Numerical integration of the equations of the theory of creep, which taken into account the microstrains. Problems of Computational Mechanics and strength of structures, technologies, 22, 281–290.

Dafalias, Y. F. (1990). The plastic spin in viscoplasticity. International Journal of Solids and Structures, 26 (2), 149–163. doi: 10.1016/0020-7683(90)90048-z

Lee, E. H. (1969). Elastic-Plastic Deformation at Finite Strains. Journal of Applied Mechanics, 36 (1), 1–6. doi:10.1115/1.3564580


GOST Style Citations


Taylor, G. I. Plastic strain in metals [Text] / J. Inst. Metals. – 1938. – Vol. 62. – P. 307–325.

Zener, C. Effect of strain rate upon plastic flow of steel [Text] / C, Zener, J. H. Hollomon // J. Appl. Phys. –1944. – Vol. 15. – P. 22–32.

Follansbee, P. S. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [Text] / P. S. Follansbee, U. F. Kocks // Acta Metallurgica. –1988. – Vol. 36, Issue 1. – P. 81–93. doi: 10.1016/0001-6160(88)90030-2 

Zerilli, F. J. The effect of dislocation drag on the stress–strain behavior of FCC metals [Text] / F. J. Zerilli, R. W. Armstrong // Acta Metallurgica et Materialia. – 1992. – Vol. 40, Issue 8. – P. 1803–1808. doi: 10.1016/0956-7151(92)90166-c 

Improvements in the MATMOD equations for modeling solute effects and yield–surface distorsion [Text] / A. K. Miller, A. S. Krauss, K. Krauss (Eds.). – Unified Constitutive Laws of Plastic Deformation. Academic Press Inc, 1996. – P. 153–227.

Nemat–Nasser, S. Flow stress of FCC polycrystals with applications to OFHC Cu [Text] / S. Nemat–Nasser, Y. Li // Acta Materialia. –1998. – Vol. 46, Issue 2. – P. 565–577. doi: 10.1016/s1359-6454(97)00230-9 

Khan, A. S. Behavior of three BCC metals during non–proportional multi–axial loadings [Text] / A. S. Khan, R. Liang // International Journal of Plasticity. – 2000. – Vol. 16, Issue 12. – P. 1443–1458. doi: 10.1016/s0749-6419(00)00016-4 

Kocks, U. F. Physics and phenomenology of strain hardening: the FCC case [Text] / U. F. Kocks, H. Mecking // Progress in Materials Science. – 2003. – Vol. 48, Issue 3. – P. 171–273. doi: 10.1016/s0079-6425(02)00003-8 

Beyerlein, I. J. A dislocation-based constitutive law for pure Zr including temperature effects [Text] / I. J. Beyerlein, C. N. Tomé // International Journal of Plasticity. – 2008. – Vol. 24, Issue 5. – P. 867–895. doi: 10.1016/j.ijplas.2007.07.017 

Chaboche, J. L. A review of some plasticity and viscoplasticity constitutive theories [Text] / J. L. Chaboche // International Journal of Plasticity. – 2008. – Vol. 24, Issue 10. – P. 1642–1693. doi: 10.1016/j.ijplas.2008.03.009 

Rusinek, A. Analysis of thermo–visco–plastic behavior of six high strength steels [Text] / A. Rusinek,J. A. Rodríguez–Martínez, J. R. Klepaczko, R. B. Pecherski // Materials & Design. – 2009. – Vol. 30, Issue 5. – P. 1748–1761. doi: 10.1016/j.matdes.2008.07.034 

Cai, M.-C. A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials [Text] / M.-C. Cai, L.-S. Niu, X.-F. Ma, H.-J. Shi // Mechanics of Materials. – 2010. – Vol. 42, Issue 8. – P. 774–781. doi: 10.1016/j.mechmat.2010.06.006 

Gréze, R. Influence of the temperature on residual stresses and springback effect in an aluminium alloy [Text] / R. Gréze, P. Y. Manach, H. Laurent, S. Thuillier, L. F. Menezes // International Journal of Mechanical Sciences. – 2010. – Vol. 52, Issue 9. – P. 1094–1100. doi: 10.1016/j.ijmecsci.2010.04.008 

Gao, C. Y. Constitutive modeling of plasticity of FCC metals under extremely high strain rates [Text] / C. Y. Gao, L. C. Zhang // International Journal of Plasticity. – 2012. – Vol. 32-33. –P. 121–133. doi: 10.1016/j.ijplas.2011.12.001 

Knezevic, M. Modeling mechanical response and texture evolution of α-uranium as a function of strain rate and temperature using polycrystal plasticity [Text] / M. Knezevic, R. J. McCabe, C.N. Tome, R. A. Lebensohn, S. R. Chen, C. M. Cady, G. T. Gray III, B. Mihaila // International Journal of Plasticity. – 2013. – Vol. 43. – P. 70–84. doi: 10.1016/j.ijplas.2012.10.011 

Hor, A. An experimental investigation of the behaviour of steels over large temperature and strain rate ranges [Text] / A. Hor, F. Morel, J.–L. Lebrun, G. Germain // International Journal of Mechanical Sciences. – 2013. – Vol. 67. – P. 108 –122. doi: 10.1016/j.ijmecsci.2013.01.003 

Новожилов, В. В. Теория пластичности, учитывающая микродеформации [Текст] / В. В. Новожилов, Ю. И. Кадашевич, Ю. А. Черняков // Докл. АН СССР. – 1985. – Т. 284, № 4. – С. 821–823.

Kadashevich, Yu. I. Theory of plasticity, taking into account microstresses [Text] / Yu. I. Kadashevich and Yu. A. Chernyakov // Advances in mechanics. – 1992. – Vol. 15, Issue 3-4. – P. 3–39.

Chernyakov, Yu. A. On extension of the phenomenological approach in the theory of plasticity [Text] / Yu. A. Chernyakov, A. S. Polishchuk and V. P. Shneider // Journal of Engineering Mathematics. – 2013. – Vol. 78, Issue 1. – P. 55–66. doi: 10.1007/s10665-011-9470-8 

Onischenko, I. S. Numerical integration of the equations of the theory of creep, which taken into account the microstrains [Text] / I. S. Onischenko, Yu. A. Chernykov, V. P. Shneider // Проблеми обчислювальної механіки і міцності конструкцій: зб. наук. праць. – 2014. – Вип. 22. – С. 281–290.

Dafalias, Y. F. The plastic spin in viscoplasticity [Text] / Y. F. Dafalias // International Journal of Solids and Structures. – 1990. – Vol. 26, Issue 2. – P. 149–163. doi: 10.1016/0020-7683(90)90048-z 

Lee, E. H. Elastic–plastic deformations at finite strains [Text] / E. H. Lee // Journal of Applied Mechanics. –1969. – Vol. 36, Issue 1. – P. 1–6. doi: 10.1115/1.3564580 







Copyright (c) 2015 Инна Сергеевна Онищенко, Юрий Абрамович Черняков, Владимир Петрович Шнейдер

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061