A study of fracture toughness of heavy-weight concrete and foam concrete reinforced by polypropylene fibre for road construction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.47421

Keywords:

reinforced concrete, crack, fracture mechanics, specific energy consumption, fracture toughness

Abstract

The study explores fracture toughness of heavy-weight concrete and foam concrete solidified by an autoclave-free method and reinforced vs. non-reinforced with polypropylene fibres. The research was conducted by the criteria of fracture mechanics to determine strength and deformation characteristics as well as power and energy features of fracture toughness of the considered concretes.

It has been discovered that addition of polypropylene fibreto the composition of heavy-weight concrete and foam concrete mainly affects the supercritical phase of deterioration: the fibre inhibited fracture of the samples once there had appeared a backbone crack (from the moment when the maximum breaking load had already been applied) until its complete defragmentation. The indicator characterizing this effect—the specific energy load used for static destruction, GF—was higher in all series of dispersed concrete reinforcement, which was quite different in the case of non-reinforced concrete and foam concrete. It proved to be the most effective additive in heavy-weight concrete and porous concrete with a density of 700 kg/m3 (respectively, the indices were 1.5 and 1.8 times higher than in the case of non-reinforced concrete). Besides, adding polypropylene fibre increases, by 22% on average,the tensile strength of concrete while bending it.

Hence, formation and development of cracks are inhibited by polypropylene fibres, which can be observed in an increase of all indicators of strength and deformability of the studied concretes as well as of power and energy features of fracture toughness.

Author Biographies

Сергій Йосипович Солодкий, National University "Lviv Polytechnic" Bandera, 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of highways

Вадим Оскарович Каганов, National University "Lviv Polytechnic" Bandera, 12, Lviv, Ukraine, 79013

Candidate of Technical Sciences, Associate Professor

Department of Building Production

Ірина Богданівна Горніковська, National University "Lviv Polytechnic" Bandera, 12, Lviv, Ukraine, 79013

Assistant

Department of Building Production

Юрій Васильович Турба, National University "Lviv Polytechnic" Bandera, 12, Lviv, Ukraine, 79013

Assistant

Department of highways

References

  1. Doroshenko, O. Yu., Doroshenko, Yu. M., Chizhenko, N. P. (2006). FIbrobeton – efektivniy materIal dlya transportnogo budIvnitstva. Avtoshlyahovik UkraYini, № 6, 29–32.
  2. Kaganov, V. O., Gornikovska, I. B. (2013). Trischinostiykist pinobetoniv bezavtoklavnogo virobnitstva. Zbirnik materialiv VIII naukovo-praktichnogo seminaru "Struktura, vlastivosti ta sklad betonu". Rivne: NUVGP, 179–185.
  3. Posternak, I. M., Kostyuk, A. I., Posternak, S. A., Posternak, A. A. (2004). Konstruktsionno-teploizolyatsionnyiy neavtoklavnyiy penobeton v konstruktsiyah i izdeliyah. Visnik DonDABA, Vol. 3 (45), 89–92.
  4. Morgun, L. V. (2002). Effektivnost primeneniya fibropenobetona v sovremennom stroitelstve. Stroitelpyie materialyi, № 3, 16–17.
  5. Svinarev, A. B., Tyisyachuk, V. V. (2003). Opyit primeneniya monolitnogo penobetona pri stroitelstve i rekonstruktsii zdaniy i sooruzheniy. Vestnik BGTU im. V. G. Shuhova, № 4, 62–66.
  6. Bogatina, A. Yu., Morgun, L. V. (2005). Fibropenobeton dlya perekryitiy karkasnyih zdaniy. Promyishlennoe i grazhdanskoe stroitelstvo, № 2, 34–35.
  7. Lundyishev, I. A. (2009). Kompleksnoe primenenie monolitnogo penobetona pri stroitelstve v trudnodostupnyih rayonah dobyichi energoresursov. Inzhenerno-stroitelnyiy zhurnal, № 4, 16–20.
  8. Kobidze, T. E., Korovyakov, V. F., Listov, S. V., Sambrovskiy, S. A. (2005). Tehnologiya ustroystva teploizolyatsionnogo osnovaniya iz legkogo penobetona monolitnoy ukladki. Stroitelnyie materialyi, № 3, 60–62.
  9. Puharenko, Yu. V. (2006). Svoystva i perspektivyi primeneniya yacheistogo fibrobetona. Populyarnoe betonovedenie, № 4, 50–53
  10. Martyinov, V. I., Orlov, D. A., Martyinov, E. V. (2006). Issledovanie strukturyi i svoystv penobetona. Visnik Odeskoyi derzhavnoyi akademiyi budivnitstva ta arhitekturi, № 23, 195–202.
  11. Talantova, K. V., Miheev, N. M., Tolstenev, S. V., Hvoinskiy, L. A. (2002). Ekspluatatsionnyie harakteristiki stalefibrobetonnyih konstruktsiy dlya dorozhnogo stroitelstva. Beton i zhelezobeton v Ukraine, № 3, 6–8.
  12. Solodky, S. Y., Turba, Y. V. (2012). Crack resistance of concrete, reinforced with fiber of different types. Weimar: Ibausil, 2-0561–2-0567.
  13. Solodkiy, S. Y. (2008). Trischinostiykist betoniv na modifikovanih tsementah. L.: NU “LP”, 144.
  14. Mydin, M. A. O., Wang, Y. C. (2012, January). Mechanical properties of foamed concrete exposed to high temperatures. Construction and Building Materials, Vol. 26, № 1, 638–654. doi:10.1016/j.conbuildmat.2011.06.067
  15. Fukang, D. (2013). Mechanical properties and energy-saving effect of polypropylene fiber foam concrete. Research Journal of Applied Sciences, Engineering and Technology, Vol. 6, № 11, 2012–2018.
  16. Richard, A. O., Ramli, M. B. (2011, September 29). A Qualitative Study of Green Building Indexes Rating of Lightweight Foam Concrete. Journal of Sustainable Development, Vol. 4, № 5, 188–195. doi:10.5539/jsd.v4n5p188
  17. Zhukov, A. D., Rudnitskaya, V. A. (2012). Foam concrete reinforcement by basalt fibres. Vestnik MGSU, № 6, 83–87.
  18. Roads and car parks on foam concrete. (2003). CROW, 80.
  19. Dhir, R. K., Newlands, M. D., McCarthy, A. (2005). Use of foamed concrete in construction. Proceedings of the International conference held at the University of Dundee, Scotland, UK on 5 July 2005. London: Thomas Telford, 174. doi:10.1680/uofcic.34068
  20. Dolton, B., Hannah, C. (2006). Cellular Concrete: Engineering and Technological Advancement for Construction in Cold Climates. The 2006 Annual General Conference of the Canadian Society for Civil Engineering, Calgary, Alberta, Canada, May 23-26, 2006, GC-125-1–GC-125-11.
  21. Lytvynyak, O., Demchyna, B., Ordon-Beska, B. (2013). Kombinacje połączenia tradycyjnych i energooszczędnych materiałów w konstrukcjach nowoczesnych budynków. Budownictwo o zoptymalizowanym potencjale energetycznym, № 1 (11), 82–89.
  22. Fedorowicz, L., Kadela, M., Bednarski, Ł. (2014). Modelowanie zachowania pianobetonu w konstrukcjach warstwowych współpracujących z podłożem gruntowym. Zeszyty naukowe wyższej szkoły technicznej w Katowicach, № 6, 73–81.

Published

2015-08-22

How to Cite

Солодкий, С. Й., Каганов, В. О., Горніковська, І. Б., & Турба, Ю. В. (2015). A study of fracture toughness of heavy-weight concrete and foam concrete reinforced by polypropylene fibre for road construction. Eastern-European Journal of Enterprise Technologies, 4(5(76), 40–46. https://doi.org/10.15587/1729-4061.2015.47421