Nitrous oxides desorption from nitric acid (58–60 wt. %)

Authors

  • Олександр Олександрович Литвиненко National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000, Ukraine https://orcid.org/0000-0003-0672-0917
  • Тамара Ивановна Печенко National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000, Ukraine https://orcid.org/0000-0002-9609-9855
  • Михаил Алексеевич Подустов National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000, Ukraine https://orcid.org/0000-0003-2119-1961
  • Алексей Иванович Букатенко National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000, Ukraine https://orcid.org/0000-0001-8199-7188

DOI:

https://doi.org/10.15587/1729-4061.2015.50293

Keywords:

nitrous oxides, nitric acid, desorption, partial pressure, solubility, Henry coefficient

Abstract

The process of nitrous oxides desorption from nitric acid solutions (in domestic schemes) was considered. It is shown that in the process of desorption (or stripping), the nitrous oxides are not removed from solutions completely, so, the nitric acid does not satisfy the technical requirements in Ukraine.

The research objective was to bring the quality of nitric acid to technological standards by removing (stripping) nitrous oxides from its solutions.

To achieve the research objective, the balance in the system of nitrous oxides - nitric acid - water was analyzed. Dependences of the partial pressures of N2O4 and NO2 on their concentrations in the liquid phase, the nitric acid concentration and temperature were investigated and determined.

It is shown that the Henry's law is applicable for the nitrous oxides desorption in the purge columns of domestic production schemes of nitric acid.

Based on experimental studies, expressions for the Henry coefficients for NO2 and N2O4 were formalized. Values of solubility of NO2 and N2O4 in the liquid phase under equilibrium conditions (and similar), i.e. 58 - 60 wt.% HNO3 at 40 - 70°C were determined.

Using the obtained dependences, a new purge column, allowing to desorb (strip) nitrous oxides from nitric acid to technological standards was designed.

Author Biographies

Олександр Олександрович Литвиненко, National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000

Professor assistant

Department Automatization of chemistry-technological systems and ecological monitoring

Тамара Ивановна Печенко, National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000

PhD, Associate professor

Department Automatization of chemistry-technological systems and ecological monitoring

Михаил Алексеевич Подустов, National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000

Doctor of Engineering Sciences, Professor

Department Automatization of chemistry-technological systems and ecological monitoring

Алексей Иванович Букатенко, National Technical University “Kharkiv Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61000

Candidate of Engineering Sciences, Associate professor

Department Automatization of chemistry-technological systems and ecological monitoring

References

  1. Tovazhnianskyi, L. (2007) Tekhnolohiia zviazannoho azotu : pidruchnyk [Technology bound nitrogen]. Kharkiv: NTU “KhPI”, 536.
  2. Barskyi, V. (2012). V Ukraine 50 mln ga zemli, prigodnoy k ispolzovaniyu, - uchenyy. Available at: http://www.ukrinform.ua/rus/news/v_ukraine_50_mln_ga_zemli_prigodnoy_k_ispolzovaniyu___ucheniy_
  3. Tovazhnjanskij, L. (Ed.) (2005). Processy i apparaty chimicheskoj technologii: in 2 part. Part 2. [Processes and devices of chemical technology: in 2 parts. P. 2.]. Kharkov: NTU “KhPI”, 628.
  4. Kutepov, A. M. (2004). Obshchaya khimicheskaya tekhnologiya : uchebnik dlya studentov vuzov, obuchayushchikhsya po spets. khim.-tekhnol. profilya [General chemical technology: a textbook for university students enrolled in the special. Chem-primary process. profile]. Moscow: Akademkniga, 528.
  5. Pismennyy, B. V. (2011). Sravnitelnaya otsenka i poisk novykh effektivnykh tekhnologicheskikh skhem ochistki gazovozdushnykh vybrosov ot oksidov azota (NOX) [Comparative evaluation and the search for new effective technological schemes fume cleaning gas emissions from nitrogen oxides (NOX)]. Voprosy khimii i khimicheskoy tekhnologii, 6, 173–176.
  6. Kuporka J. (2011). Removal of nitrogen oxides from flue gases in a packed column. Environment Protection Engineering, 37 (1), 13–22.
  7. Chacuk, A. (2007). Intensification of nitrous acid oxidation. Chemical Engineering Science, 62 (24), 7446–7453. doi: 10.1016/j.ces.2007.08.023
  8. De Paiva, J. L., Kachan, G. C. (2004). Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column. Chemical Engineering and Processing: Process Intensification, 43 (7), 941–948. doi: 10.1016/j.cep.2003.08.005
  9. Potorzhinskaya, S. S. (1982). Issledovanie ravnovesiya v sisteme azotnaya kislota – voda – okisly azota pri soderzhanii do 1,5 % N2O4 [Study of equilibrium in the system nitric acid – water – nitrogen oxides with content to 1.5% N2O4]. Trudy NII TEKhIM, 1, 1–5.
  10. Solovev, N. N. (1979). Dissotsiatsiya N2O4 v nevodnykh rastvoritelyakh [The N2O4 dissociation in non-aqueous solvents]. Zhurnal prikladnoy khimii, 52 (10), 2324–2326.
  11. Hamil, H. F. (1974). Collaborative Study of Method for the Determination of Nitrogen Oxide Emissions from Stationary Sources (Nitric Acid Plants). Southwest Research Institute Report for Environmental Protection Agency. Research Triangle Park, NC, 40.
  12. Tereshchenko, L. Ya. (1972). K voprosu o raschete usloviy ravnovesiya i protsessov vzaimodeystviya okislov azota s rastvorami azotnoy kisloty [To the question of the quilibrium conditions calculation and the nitrogen oxides to nitric acid solutions interaction]. Zhurnal prikladnoy khimii, 45 (1), 189–192.
  13. Tereshchenko, L. Ya. (1979). Ravnovesie oksidov azota s rastvorami azotnoy kisloty [Equilibrium of nitrogen oxides from nitric acid solutions]. Zhurnal prikladnoy khimii, 52 (3), 1743–1747.
  14. Chambers, F. S., Sherwood, T. K. (1937). Absorption of Nitrogen Dioxide by Aqueous Solutions. Industrial & Engineering Chemistry, 29 (12), 1415–1422. doi: 10.1021/ie50336a022
  15. Lefers, J. B. (1980). The oxidation and absorption of nitrogen oxides in nitric acid in relation of the tail gas problem of nitric acid plants. Chemical Engineering Science, 35 (1-2), 145–153. doi: 10.1016/0009-2509(80)80081-9
  16. Karavaev, M. M. (1962). Ravnovesie pri obrazovanii azotnoy kisloty v gazovoy faze [The equilibrium when the nitric acid creating in the gaseous phase]. Zhurnal fizicheskoy khimii, 35 (5), 1072–1074.
  17. Klemenc, A. (1952). Zur Kenntnis der Salpetersäure. X Methoden zur Gasanalyse im System N2–NO–NO2–N2O4–N2O3–HNO2–HNO3. Monatshefte Fär Chemie, 83 (2), 334–345. doi: 10.1007/bf00938559
  18. Olevskiy, V. M. (Ed.) (1985). Proizvodstvo azotnoy kisloty v agregatakh bolshoy edinichnoy moshchnosti [Nitric acid production in units with high unit capacity]. Moscow: Khimiya, 400.
  19. Zimon, A. D. (2003). Fizicheskaya khimiya : uchebnik dlya vuzov [Physical chemistry: textbook for high schools]. Moscow: «Agar», 320.
  20. Atroshchenko, V. I. (1968). Kurs tekhnologii svyazannogo azota. [Course technology bound nitrogen]. Moscow: Khimiya, 384.
  21. Bodenstein M. (1922). Bildung und Zerlegung von stickoxid. Zeitschrift für Physikalische Chemie, 100, 63–72.
  22. Kislota azotnaja nekoncentrirovannaja TU:TUU 24.1–33968601–001:2008. Available at: http://hymdyv.com.ua/ru/pr_kislota_azot_nekonzentrir.html
  23. Intensifikatsiya protsessa polucheniya nekontsenrirovannoy azotnoy kisloty na Nevinnomysskom PO «Azot»: otchet o NIR (zaklyuchitelnyy) [The intensification of the obtaining no concentrated nitric acid process at Nevinnomysskiy "Azot": research report (final)] (1987). Kharkov: NTU “KhPI”, 35.
  24. Razrabotka optimalnykh usloviy polucheniya azotnoy kisloty razlichnoy kontsentratsii pod davleniem 20–25 atm. Intensifikatsiya protsessa polucheniya nekontsentrirovannoy azotnoy kisloty na NPO «Azot»: otchet o NIR (zaklyuchitelnyy) [Development of optimal conditions for obtaining different concentrations nitric acid at a pressure of 20-25 atm. The intensification of the obtaining concentrated nitric acid process on PA "Azot": research report (final)] (1987). Kharkov: NTU “KhPI”, 48.
  25. Skalska, K. (2011). Kinetic model of NOX ozonation and its experimental verification. Chemical Engineering Science, 66 (14), 3386–3391. doi: 10.1016/j.ces.2011.01.028
  26. Janiczek, W. (2014). A simplified model of the absorptive-regenerative process in the technology of nitric acid production. Technical Transactions. Chemistry, 1, 15–33
  27. Vasilev, V. P. (1989). Analiticheskaya khimiya : v 2 ch. Ch. 1. Gravimetricheskiy i titrimetricheskiy metody analiza [Analytical chemistry: in 2 parts. Part 1. Gravimetric and titrimetric analysis methods]. Moscow: Vysshaya shkola, 320.

Published

2015-10-16

How to Cite

Литвиненко, О. О., Печенко, Т. И., Подустов, М. А., & Букатенко, А. И. (2015). Nitrous oxides desorption from nitric acid (58–60 wt. %). Eastern-European Journal of Enterprise Technologies, 5(6(77), 43–48. https://doi.org/10.15587/1729-4061.2015.50293

Issue

Section

Technology organic and inorganic substances