Simulation of the thermal state of the premises with the heating system «Heat-insulated floor»

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.56647

Keywords:

radiant heating system, numerical simulation, thermal state of premise, "heat-insulated floor"

Abstract

Application of computer numerical simulation of aerodynamic and heat and mass transfer processes in premises with a radiant heating system "heat-insulated floor" using the software package ANSYS CFX is considered. The main objective of the research is to improve the energy efficiency of thermal energy in premises based on the analysis of their thermal modes. As the object of research, thermodynamic parameters of the thermal state of the premises with a radiant heating system "heat-insulated floor" were selected. The results of simulation of the thermal state of premises allow to carry out a study of the influence of non-stationary processes in the internal volume of premises on the overall thermal state and obtain analytical dependencies of changes in the thermal state parameters of premises on the time of its heating. The research results can be applied by energy auditors in the field of power engineering to assess compliance with the comfort conditions in the premise, analyze its thermal state, evaluate the effectiveness of various energy-saving measures.

Author Biographies

Микола Іванович Сотник, Sumy State University, Rimskogo-Korsakova str., 2, Sumy, 40007, Ukraine

Candidate of Technical Sciences, Associate Professor

Department of Applied Fluid Aeromechanics

Сергій Олександрович Хованський, Sumy State University, Rimskogo-Korsakova str., 2, Sumy, 40007, Ukraine

Candidate of Technical Sciences, Associate Professor

Department of Applied Fluid Aeromechanics

Ірина Павлівна Гречка, National Technical University «Kharkiv Polytechnic Institute» Frunze str., 21, Kharkiv, Ukraine, 61002

Candidate of Technical Sciences, Associate Professor

Department of theory and computer aided design of mechanisms and machines

Віталій Олександрович Панченко, Sumy State University, Rimskogo-Korsakova str., 2, Sumy, 40007, Ukraine

Assistant professor

Department of Applied Fluid Aeromechanics

Марія Олександрівна Максимова, National university of civil protection of Ukraine Chernyshevsky str., 94, Kharkiv, Ukraine, 61023

Candidate of Technical Sciences, Associate Professor

Department of Fire prevention in settlements

References

  1. Olekhnovych, L. I. ed. (2014). Statystychnyi shchorichnyk Sumskoi oblasti za 2013 rik. Holovne upravlinnia statystyky u Sumskii obl. Sumy, 568.
  2. Sakharov, Y.A., Nyzovtsev, M. Y. (2013). Raschet vzaimnoho vliianiia teplovykh y konstruktyvnykh parametrov vodianoho teploho pola. Polzunovskii vestnik, 3/2, 33–37.
  3. Hu, R. Niu, J. L. (2012). A review of the application of radiant cooling and heating systems in Mainland China. Energy and Buildings, 52, 11–19. doi: 10.1016/j.enbuild.2012.05.030
  4. Tabunshchykov, Yu. A., Brodach, M. M. (2002). Matematycheskoe modelirovanie y optimizatsiia teplovoi effektivnosti zdanii. Moscow: AVOK-PRESS, 194.
  5. Zhang, F., de Dear, R. (2015). Thermal environments and thermal comfort impacts of Direct Load Control air-conditioning strategies in university lecture theatres. Energy and Buildings, 86, 233–242. doi: 10.1016/j.enbuild.2014.10.008
  6. Baldvinsson, І., Nakata, T. (2014). A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method. Energy, 74, 537–554. doi: 10.1016/j.energy.2014.07.019
  7. Deshko, V. I., Shovkaliuk, M. M. (2009). Rozrobka nestatsionarnoi modeli teplovoho stanu ohorodzhen budivli. Visnyk SumDU, 4, 218–225.
  8. Rohdin, P. Moshfegh, B. (2011). Numerical modelling of industrial indoor environments: A comparison between different turbulence models and supply systems supported by field measurements. Building and Environment, 46 (11), 2365–2374. doi: 10.1016/j.buildenv.2011.05.019
  9. Koranteng, C., Mahdavi, A. (2011). An investigation into the thermal performance of office buildings in Ghana. Energy and Buildings, 43 (2–3), 555–563. doi: 10.1016/j.enbuild.2010.10.021
  10. ANSYS CFX 11.0 Solver Theory (2008). Release 11.0. 261. Available at: http://www.ansys.com
  11. ANSYS CFX 11.0 Solver Models (2000). Release 11.0. 549. Available at: http://www.ansys.com

Published

2015-12-25

How to Cite

Сотник, М. І., Хованський, С. О., Гречка, І. П., Панченко, В. О., & Максимова, М. О. (2015). Simulation of the thermal state of the premises with the heating system «Heat-insulated floor». Eastern-European Journal of Enterprise Technologies, 6(5(78), 22–27. https://doi.org/10.15587/1729-4061.2015.56647

Issue

Section

Applied physics