Development of the model of forced-exhaust ventilation for passenger carriages

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.59444

Keywords:

forced-exhaust ventilation, model, fractional-differential controllers, genetic algorithms, parameters identification

Abstract

The behavior analysis of the model of forced-exhaust ventilation for the passenger compartment carriage, based on the principle of similarity with electric circuits is performed. For quality indicators of the control object, the parameters of resistance and relative inductances determining the aerodynamic inertia of ducts and compartments are included in the model. The computations produced the charts of transients of air flows in individual compartments and the total flow. Their analysis suggests that despite the model formation only of the objects described by the first-order differential equations, the equivalent models of the carriage and individual compartments may be characterized by fractional order of differential equations. This allows us to offer a method of identifying the dynamic parameters of individual sections of the air duct and the compartment by fractional aperiodic links. Such links are a special case of the hyper-neuron. Their parameters are well defined using genetic algorithms. This reduced the order of equivalent transfer functions to 0.9...1.8 with a relative mean square error between the results of the ventilation system model transients and the solutions of fractional differential equations of no more than 0.14...1.23%.The results indicate the feasibility of constructing a control system for the ventilation unit using the theory of fractional integral-differential controllers.

Author Biographies

Виктор Владимирович Бушер, Odessa National Polytechnic University 1, ave. Shevchenko, Odessa, Ukraine, 65044

Associate Professor, Doctor of Technical Sciences

Department of electromechanical systems with computer control

Виктория Ярославовна Ярмолович, Polytechnic University 1 Shevchenko ave., Odessa, Ukraine, 65044

Senior Lecturer

Department of theoretical foundation and general electrical 

References

  1. European Standard EN 15232 (2007). Energy performance of buildings. Impact of Building Automation, Controls and Building Management. Available at: http://www.cres.gr/greenbuilding/PDF/prend/set4/WI_22_TC-approval_version_prEN_15232_Integrated_Building_Automation_Systems.pdf
  2. Directive 2010/31/EU of the European Parlia­ment and of the Council (2010). On the energy performance of buildings, recast. Available at: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF
  3. Busher, V. V., Khristo, P. Ie. (2008). Model elektrotekhnichnykh elementiv pryplyvnoi ventyliatsii yak ob’iektiv z rozpodilenymy parametramy [Мodel ventilators electrical elements as objects with distributed parameters]. Visnyk Natsionalnogo tekhnicheskogo universitetatu «Kharkivskyi politekhnichnyi instytut» Problemy avtomatyzovanoho elektropryvodu. Teoriia y praktyka, 30, 505–506. – Available at: http://www.kpi.kharkov.ua/archive/ Наукова_періодика/vestnik/Проблеми автоматизованого електроприводу. Теорія і практика/2008/30/p505-506. Бушер,Христо.pdf
  4. Bondar, E. S., Hordyenko, A. S., Mykhailov, V. A. (2005). Avtomatyzatsyia system ventyliatsyy y kondytsyonyrovanyia vozdukha [Automation of systems of ventilation and air conditioning]. Avanpost–Prym, 560.
  5. Mandelbrot, B. B. (2009). Fraktalyi i haos. Mnozhestvo Mandelbrota i drugie chudesa. [Fractals and chaos. Mandelbrot set and other wonders]. Reguljarnaja i haoticheskaja dinamika, 392.
  6. Tarasov, V. E. (2005). Fractional Liouville and BBGKI equations. Journal of Physics: Conference Series, 7, 17–33. doi: 10.1088/1742-6596/7/1/002
  7. Gebhart, B. (1991). Svobodnokonvektivnyie techeniya, teplo– i massoobmen [Svobodnokonvektivnye flow, heat and mass transfer]. Moscow: Mir, book 1, 678.
  8. Gebhart, B. Svobodnokonvektivnyie techeniya, teplo– i massoobmen. [Svobodnokonvektivnye flow, heat and mass transfer]. Moscow: Mir, book 2, 528.
  9. Aoki, Y., Sen, M., Paolucci, S. (2005). Approximation of transient temperatures in complex geometries using fractional derivatives. Technical Note of department of aerospace of Notre Dam, 21.
  10. Petras, I. (2000). The fractional–order controlers: Methods for their syntesis and applications. Available at: http://arxiv.org/pdf/math/0004064.pdf
  11. Petras, I., Dorsak, L., Kostial, I. (1998). Control quality enhancement by fractional order controllers. Acta Montanistica Slovaka, Rochnik, 2, 143–148.
  12. Petras, I., Podlubny, I., O'Leary, P. (2002). Analogue realization of Fractional Order Controllers. FBERG, Tech. University of Kosice, 84.
  13. Pipes, L. A. (1956). Computation of the impedances of nonuniform lines by a direct method. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 75 (5), 551–554. doi: 10.1109/tce.1956.6372426
  14. Busher, V., Yarmolovich, V. (2014). Modeling and Identification of Systems with Fractional Order Integral and Differential, Electrotechnical and Computer Systems, 15 (91), 52–56. Available at: http://etks.opu.ua/?fetch=articles&with=info&id=379
  15. Busher, V. V. (2012). Syntez rehuliatorov dlia system upravlenyia klymatycheskymy ustanovkamy [Synthesis of controllers for air conditioning control systems]. Elektrotekhnichni ta komp’iuterni systemy, 05 (81), 125–130. Available at: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/etks_2012_5_20.pdf
  16. Tykhonov, A. N., Samarskyi, А. А. Uravnenyia matematycheskoi fyzyky. [Partial Differential Equations]. Available at: http://pskgu.ru/ebooks/tihonov.html
  17. Kohan, Y. Sh. Fyzycheskye analohyy – ne analohyy, a zakon pryrodi [Рhysical analogy – no analogy, and the law of nature]. Available at: http://www.sciteclibrary.ru/texsts/rus/stat/1362.pdf
  18. Bohdanov, S. N., Burtsev, S. Y., Yvanov, O. P., Kupryianova, A. V. (1999). Kholodylnaia tekhnyka. Kondytsyonyrovanye vozdukh. Svoistva veshchestv. [Refrigeration. Air conditioning. The properties of substances], 320.
  19. Busher, V. V. (2010). Ydentyfykatsyya elementov klymatycheskykh system dyfferentsyal'numy uravnenyyamy drobnoho poryadka. [Identification of the elements of climate systems of differential equations of fractional order], Elektromashynobud. ta elektroobladn., Technica Publ., 75, 68–70. Available at: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/etks_2010_75_14.pdf
  20. Busher, V., Yarmolovich, V. (2014). Modeling and Identification of Systems with Fractional Order Integral and Differential. Electrotechnical and Computer Systems, 15 (91), 52–56. Available at: http://etks.opu.ua/?fetch=articles&with=book&id=15

Published

2016-02-07

How to Cite

Бушер, В. В., & Ярмолович, В. Я. (2016). Development of the model of forced-exhaust ventilation for passenger carriages. Eastern-European Journal of Enterprise Technologies, 1(8(79), 40–46. https://doi.org/10.15587/1729-4061.2016.59444

Issue

Section

Energy-saving technologies and equipment