Study of the effect of compounds of transition elements on the micellar catalysis of strength formation of reactive powder concrete

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.63957

Keywords:

concrete, strength, surfactants, micellar catalysis, cement, rate, transition elements

Abstract

Changes in the rate of cement hydration affect the rate of concrete compressive strength formation. Under certain conditions, an increase in the cement hydration rate improves the concrete compressive strength. This is especially true for reactive powder concretes.

The paper studies the effect of micellar solutions, consisting of a mixture of a micelle-forming surfactant and compounds of transition elements. A feature of the study was investigating the simultaneous effect of micelle-forming surfactants and compounds of transition elements on the change in the concrete strength. The study found that given micellar solutions and compounds of transition elements alter the nature of the concrete strength formation, namely increase the rate of strength formation of reactive powder concretes in the initial period due to micellar catalysis of cement hydration and maintain increased compressive strength at later stages of hardening through the impact of compounds of transition elements, formation of minerals, containing high amount of chemically-bound water.

It is proved that micellar catalysis can be used to control the processes of cement hardening and strength formation of artificial stone, produced in the cement hydration, thereby reducing the time to achieve the concrete design strength and increasing the absolute value of compressive strength of such concretes at 28 days using compounds of transition elements.

Author Biography

Alexsander Shishkin, National University of Krivoy Rog XXII-th Party Congress str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor

Department of Technology of building products, materials and structures

References

  1. Glinka, N. L. (1979). Obshhaja himija. Himija, 730.
  2. Sychev, M. M. (1984). Vozdejstvie poroshkov d-metallov na tverdenie cementov. Zhurn. prikl. himii VII (3), 552–557.
  3. Pashhenko, A. A. (1975). Vjazhushhie materialy. Vyssha shkola, 444.
  4. Shejnich, L. A. (2002). Special'nye betony i kompozicionnye materialy. Budіvel'nі klonstrukcіi. Mіzhvіdomchij naukovo-teh-nіchnij zbіrnik, 367–377.
  5. Shejnich, L. A. (1999). Radіacіjnozahisnі materіali dlja ob'ektіv atomnoi energe-tiki Ukraini. Budіvel'nі klonstrukcіi. Mіzhvіdomchij naukovo-tehnіchnij zbіrnik, 19–23.
  6. Shishkin, A. A. (1989). Betony na osnove shlamov obogashhenija zheleznyh rud i shhelochnogo komponenta. Krivoi Rog, 177.
  7. Shishkіn, O. O. (2001). Specіal'nі betoni dlja pіdsilennja budіvel'nih konstrukcіj, shho ekspluatujut'sja v umovah dіi agresivnih seredovishh. «Mіneral», 113.
  8. Ohotin, V. V. (1938). Stabilizacija gruntov metodom silikatirovanija. Stabilizacija gruntov. Gushosdor, 102–116.
  9. Reznichenko, P. T., Chehov, A. P. (1973). Ohrana okruzhajushhej sredy i ispol'zovanie othodov promyshlennosti. Promin', 94.
  10. Shishkin, A. A. (1989). Shlakoshlamovye vjazhushhie. Belgorod, 125.
  11. Falikman, V. R. (2011). Novye jeffektivnye vysokofuncional'nye betony. Beton i zhelezobeton, 2, 78–84.
  12. Erdem, T. K., Kırca, Ö. (2008). Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22 (7), 1477–1483. doi: 10.1016/j.conbuildmat.2007.03.026
  13. Batudaeva, A. V., Kardumyan, G. S., Kaprielov, S. S. (2005). Vysokoprochnye modificirovannye betony iz samovyravnivayushchihsya smesej. Beton i zhelezobeton, 4, 14–18.
  14. Swamy, R. N., Sakai, M., Nakamura, N. (2006). Role of Superplasticizers and Slag for Producing High Performance Concrete. The Fourth CANMET/ACI International Conf. on Superplasticizers and Other Chemical Admixtures in Concrete: ACI SP-148-1. Proceedings. Detroit (USA), 1–26.
  15. Shishkin, A. A. (2014). Shchelochnye reaktsionnye poroshkovye betony. Stroitelstvo unikalnykh zdaniy i sooruzheniy, 2 (17), 56–65.
  16. Yang, Y., Sato, R., Kawai, K. (2005). Autogenous shrinkage of high-strength concrete containing silica fume under drying at early ages. Cement and Concrete Research, 35 (3), 449–456. doi: 10.1016/j.cemconres.2004.06.006
  17. Termkhajornkit, P., Nawa, T., Nakai, M., Saito, T. (2005). Effect of fly ash on autogenous shrinkage. Cement and Concrete Research, 35 (3), 473–482. doi: 10.1016/j.cemconres.2004.07.010
  18. Tevyashev, A. D. (2009). O Vozmozhnosti upravleniya svoystvami tsementobetonov s pomoshchyu nanomodifikatorov. Eastern-European Journal of Enterprise Technologies, 4/7(40), 35–40. Available at: http://journals.uran.ua/eejet/article/view/22048/19660
  19. Sobolev, K. (2005). How Nanotechnology Can Change the Concrete World. American Ceramik Society Bulletin, 10, 14–17.
  20. Shishkіna, O. O. (2016). Study of the nanocatalysis effect on the strength formation of reactive powder concrete . Eastern-European Journal of Enterprise Technologiesб 1/6 (79)б 55-60. doi: 10.15587/1729-4061.2016.58718

Published

2016-04-27

How to Cite

Shishkin, A. (2016). Study of the effect of compounds of transition elements on the micellar catalysis of strength formation of reactive powder concrete. Eastern-European Journal of Enterprise Technologies, 2(6(80), 60–65. https://doi.org/10.15587/1729-4061.2016.63957

Issue

Section

Technology organic and inorganic substances