Modeling of corrosion process of the high-performance concretes in sulfate environment

Authors

  • Leonid Sheinich State Enterprise “The State Research Institute of Building Construction” Minregion Ukraine 5/2 Preobragenska str., Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0002-7684-9495
  • Artem Pryymachenko State Enterprise “The State Research Institute of Building Construction” Minregion Ukraine 5/2 Preobragenska str., Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0003-4335-5752

DOI:

https://doi.org/10.15587/1729-4061.2016.64113

Keywords:

concrete, cement, new composition, superplasticizer, active mineral additive, corrosion, metakaolin, fly ash

Abstract

The main contemporary method for measuring stability of concrete in aggressive environments is to compare the strength of concrete that solidified in an aggressive environment with the strength of concrete that solidified in a non-aggressive environment. This approach to testing has been quite effective in many cases, but it does not allow analysing the impact of corrosion products on the strength of concrete cement matrix. Such data can be obtained after removing corrosion products from the cement matrix of concrete.

The techniques applied in the study involved removal of corrosion products while subjecting the samples to aggressive environments, which helped determine that a cement skeleton of concrete with an integrated active mineral additive (a mixture of acidic ash removal of metakaolin in optimal quantities) has greater strength and corrosion resistance than a cement skeleton of concrete without a complex active mineral additive.

A combination of physical and chemical methods of research – such as phase-contrast X-ray imaging, thermal, and electron microscopy – showed that a complex active mineral additive produces cement structure peculiarities. Thus, it has been determined that frames with a complex active mineral additive can form dense structures with a significant number of low-base calcium silicate hydrates and solid solutions of hydrated aluminium silicate composition (hydrated galena – hydrated anorthite). This is quite different from structures without the complex active mineral additive, which are characterized in an aggressive environment (for example, in a solution of sulphuric acid) by leaching of soluble compounds such as portlandite; moreover, this process is intensified by smoothing the sample surface. These peculiarities of forming cement matrix structure explain the high corrosion resistance of concretes. The obtained data are important for developing a composition of concretes for reinforced concrete structures that are used in aggressive environments.

Author Biographies

Leonid Sheinich, State Enterprise “The State Research Institute of Building Construction” Minregion Ukraine 5/2 Preobragenska str., Kyiv, Ukraine, 03037

Doctor of sciences, Professor

Department of reinforced concrete structure manufacturing technology

Artem Pryymachenko, State Enterprise “The State Research Institute of Building Construction” Minregion Ukraine 5/2 Preobragenska str., Kyiv, Ukraine, 03037

Postgraduate student

Department of reinforced concrete structure manufacturing technology

References

  1. Pryymachenko, А. S., Sheinich, L. О., Pushkarova, К. К., Gedylan, S. І. (2013). Vpliv komplecsnoji aktivnoji mineralnoji dobavki riznogo sklady na mitsnist betony. Resyrsoekonomni materiali, constryktsii, bydivli ta sporydi, 26, 126–128
  2. Hornbostel, K., Larsen, C. K., Geiker, M. R. (2013). Relationship between concrete resistivity and corrosion rate – A literature review. Cement and Concrete Composites, 39, 60–72. doi: 10.1016/j.cemconcomp.2013.03.019
  3. von Lohaus, L., Petersen, L. (2007). Hochleistungsbetone mit erhöhtem Säurewiderstand für den Kühlturmbau. Artikel aus: Beton-Informationen, 47, 5/6, 71–79.
  4. Damtoft, J. S., Herfort, D., Yde, E. (1999). Conrete binders, mineral additions and chemical admixtures: state of the art and challengers for the 21s century. Creating with Conrete: the Intern. Conf.: Proc. Dundee (Scotland), 1–15.
  5. Naik, T. R., Kraus, R. N., Siddique, R., Botha, F. (2003). Use of superplasticizers in the production of HVFA concrete containing clean-coal ash and class F fly ash. The Seven CANMET/ ACI Intern. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete: Proc. Berlin (Germany), 1–31.
  6. Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. doi: 10.1016/j.cemconcomp.2014.11.003
  7. Temuujin, J., van Riessen, A., MacKenzie, K. J. D. (2010). Preparation and characterisation of fly ash based geopolymer mortars. Construction and Building Materials, 24 (10), 1906–1910. doi: 10.1016/j.conbuildmat.2010.04.012
  8. Rivera, F., Martínez, P., Castro, J., López, M. (2015). “Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates.” Cement and Concrete Composites, 63, 104–112. doi: 10.1016/j.cemconcomp.2015.08.001
  9. Sheinich, L. А., Popryga, P. V. (2005).Visokoprochnie betoni dla monolitnogo domostroenija, Migvidomchij naykovo-tehnichnij zbirnik “Bydivelni constryktsii”, 63, 95–99.
  10. Collepardi, M., Collepardi, S., Ogoumah, J. J., Tpoli, R. (2007). Beneficiated Fly Ash Versus Normal Fly Ash or Silica Fume. The 9th CANMET/ACI Intern. Conf. on Fly Ash, Silica Fume, Slag and natural Pozzolans in Concrete, 1–8.
  11. Dvorkin, L. J., Lyshnicova, N. V., Runova, R. F., Trojan, V. V. (2007). Metacaolin v bydivelnih rozchinah i betonah. Кyiv. Vidavnitstvo CNUBA, 216.
  12. Sabir, B. B., Wild, S., Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23 (6), 441–454. doi: 10.1016/s0958-9465(00)00092-5
  13. Fernandez, R., Martirena, F., Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41 (1), 113–122. doi: 10.1016/j.cemconres.2010.09.013
  14. Mostafa, N. Y., Mohsen, Q., El-Hemaly, S. A. S., El-Korashy, S. A., Brown, P. W. (2010). High replacements of reactive pozzolan in blended cements: Microstructure and mechanical properties. Cement and Concrete Composites, 32 (5), 386–391. doi: 10.1016/j.cemconcomp.2010.02.003
  15. Vejmelková, E., Pavlíková, M., Keppert, M., Keršner, Z., Rovnaníková, P., Ondráček, M. et. al. (2010). High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Construction and Building Materials, 24 (8), 1404–1411. doi: 10.1016/j.conbuildmat.2010.01.017
  16. Bytt, Ju. M., Timashov, V. V. (1973). Practikum pо himicheskoj tehnologii vjagyschih materialov. Moscow: Vishaja shcola, 499.
  17. Gorshkov, V. S., Timashov, V. V., Saveljev, V. G. (1981). Metodi fizico-himichescogo analiza vjagyschih veschestv. Moscow: Vishaja shcola, 334.
  18. Index (inorganic) to the pouda diffraction file ASTM. (1969). Publication PD1S – 1911. American society for testing and materials. York, Pensylvania, 216.
  19. Semenov, Е. I., Jushko-Zaharova, О. Е., Macsimyk, I. E. et. al. (1981). Mineralogicheskie tablitsi. Moscow: Nedra, 399.
  20. Levin, Е. V., Okynev, A. Ju., Ymnjakova, N. P., Shybin, I. L.; Shybin, I. L. (Ed.) (2012) Osnovi sovremennoj stroitelnoj termografii. Moscow: NIISF RAASN, 176.

Published

2016-04-27

How to Cite

Sheinich, L., & Pryymachenko, A. (2016). Modeling of corrosion process of the high-performance concretes in sulfate environment. Eastern-European Journal of Enterprise Technologies, 2(6(80), 53–59. https://doi.org/10.15587/1729-4061.2016.64113

Issue

Section

Technology organic and inorganic substances