Investigation of the bio-resistance of insulating protective coatings modified by polymeric petroleum resins

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65483

Keywords:

polymeric petroleum resins, modification, petroleum bitumen composites, protective coatings, adhesion, inhibitory properties, soil bacteria

Abstract

Basic patterns of modification of bitumen composites by polymeric petroleum resins (PPR) are processed. Creation of new highly effective metal protecting compositions and study of their action patterns is an important scientific problem. It is found that introduction of PPR to the insulating petroleum bitumen improves the anticorrosive properties of protective coatings for underground pipelines. The adhesive strength of petroleum bitumen coatings is investigated. The mechanism of influence of the PPR components on the technical and operational properties of the compositions is considered. It is shown that the compositions on the basis of insulation bitumen BNI-IV-3, modified by cooligomeric dark PPR have higher anticorrosive characteristics and demonstrate bio-resistance to soil sulfate-reducing bacteria of the genus Desulfovibriodesulfuricans, especially corrosive for pipeline steel. Polymeric petroleum resins as modifiers significantly increase the inhibitory properties of the bitumen matrix and its resistance to soil bacteria. The absence of the catalyst extraction stage significantly reduces the bitumen modification cost. The results of the study of electroinsulating and anticorrosive characteristics of petroleum bitumen mastics, modified by the products of cooligomerization of hydrocarbon pyrolysis by-products confirmed the efficiency of the above materials and compositions on their basis in the protection of main oil and gas pipelines.

Author Biographies

Irena Nykulyshyn, Lviv Polytechnic National University 12 S. Bandery str., Lviv, Ukraine, 79013

Doctor of Technical Science, Associate professor

Department of Organic Products Technology

Zorian Pikh, Lviv Polytechnic National University 12 S. Bandery str., Lviv, Ukraine, 79013

Doctor of Chemical Science, Professor, head of Department

Department of Organic Products Technology

Svitlana Gnatush, Ivan Franko Lviv National University 4 M. Grushevskogo str,, Lviv, Ukraine, 79005

Candidate of Biological Science, professor, Head of Department

Department of Microbiology

Zoriana Gnativ, Lviv Polytechnic National University 12 S. Bandery str., Lviv, Ukraine, 79013

PhD, assistant

Department of Chemical Engeneering

Ruslana Chajkivska, Lviv Polytechnic National University 12 S. Bandery str., Lviv, Ukraine, 79013

Department of Organic Products Technology

References

  1. Gryshchenko, V. K., Voroncova, A. V., Busko, N. A. (2006). Modyfikatory gumovych sumishej na osnovi naftopolimernych smol piroliznoi frakcii С9 naftoproduktiv. Polimernyj zurnal, 3, 238–245.
  2. Bratychak, М., Grynyshyn, O., Astakhova, O., Shyshchak, O., Waclawek, W. (2010). Functional petroleum resins based on pyrolysis by-products and their application for bitumen modification. Ecological chemistry and engineering, 17 (3), 309–315.
  3. Grynyshyn, O. (2011). Osnovy tekhnologij oderzannia modyfikovanych naftopolimernymy smolamy bitumiv ta zahysnych pokryt. Lviv, 40.
  4. Grynyshyn, O. (2009). Shliachy pidvyszczennia jakosti naftovych bitumiv. Advance in Petroleum and Gas Industry and Petrochemistry –V, 60–61.
  5. Grycenko, Ju. B., Pyszjev, S. V., Khlibyshyn, Ju. Ya. (2014). Influence of the nature of polymer on properties of modified bitumen. Eastern-European Journal of Enterprise Technologies, 2/11 (68), 4–8. doi: 10.15587/1729-4061.2014.21862
  6. Krynyckyj, V. V. (2009). Modyfikacija naftovych bitumiv naftopolimernymy smolamy. Lviv, 22.
  7. Kurmakova, I. M., Syza, O. I., Korolev, O. O., Kapitanczuk, L. M. (2012). Nanostrukturni procesy pry ingibuvanni korosii stali nitrogenovmisnymy kondensovanymy geterocyklamy. Fizyka i chimija tverdogo tila, 13 (4), 1058–1063.
  8. Kryzanivskyj, Ye. I., Fedorovych, Ya. T., Polytrenko, M. S. (2011). Pidvyshchennia protykorozijnych charakterystyk ta nadannia biostijkoti zacysnym izoliacijnym pokryttiam na bitumno polimernij osnovi. Rozvidka ta rozrobka naftovych i gazovych rodovyshch, 3 (40), 100–105.
  9. Grynyshyn, O. B., Frider, I. F. (2013). Application of polymers to modify bitumen obtained from waxy oils. Eastern-European Journal of Enterprise Technologies, 2/6 (62), 29–32. Available at: http://journals.uran.ua/eejet/article/view/12270/10157
  10. Purisz, L. M., Asaulenko, L. G., Abdulina, D. R., Iutynska, G. O. (2010). Charakterystyka sulfatvidnovluvalnych bakterij, vydilenych u teplovych merezach. Dopovidi Nacionalnoi akademii nauk Ukrainy, 4, 169–173.
  11. Zanina, V. V., Kopteva, Z. P., Kopteva, A. E., Kozlova, I. A. (2003). Metody ocenki mikrobnoj stojkosti zashchitnych pokrytij. Mikrobiol. zurnal, 65 (5), 41–44.
  12. Kozlova, I. P., Radchenko, O. S., Stepura, L. G. (2008). Geochimichna dijalnist mikroorganizmiv ta ii prykladni aspekty. Kyiv: Naukova dumka, 527.
  13. Kryzanivskyj, Ye. I., Fedorovych, Ya. T., Polytrenko, M. S. (2007). Pidvyshchennia efektyvnosti antykorozijnogo zachystu pidzemnych naftogazoprovodiv. Resursozberigajuchi technologii u naftogazovij energetyci. Ivano-Frankivsk, IFNTUNG – 40, 127.
  14. Kryzanivskyj, Ye. I., Polytrenko, M. S., Guzov, Ju. P., Rudko, V. V. (2008). Doslidzennia izoliacijnych ta antykorozijnych charakterystyk modyfikovanych bitumno-polimernych pokryt. Rozvidka ta rozrobka naftovych i gazovych rodovyshch, 1, 57–60.
  15. Kryzanivskyj, Ye. I., Polytrenko, M. S., Fedorovych, Ya. T. (2011). Pidvyshchennia efektyvnosti vykorystannia suchasnych izoliacijnych pokryttiv dla zachystu pidzemnych sporud vid korozii. Nafto-gazova energetyka – 2011. Ivano-Frankivsk, 91.
  16. Kryzanivskyj, Ye. I., Polytrenko, M. S., Fedorovych, Ya. T. (2011). Vidnovlennia protykorozijnogo zachystu pidzemnych gazonaftoprovodiv u sylno mineralizovanych gruntach. Naftogazova energetyka, 1 (41), 34–38.
  17. Kryzanivskyj, Ye. I., Polytrenko, M. S. (2012). Pidvyshchennia efektyvnosti pasyvnogo zachystu pidzemnych sporud vid korozii. Naukovyj visnyk IFNTUNG, 1 (31), 32–41.
  18. Serednyckyj, Ya., Banachevych, Ju., Dragylev, A. (2005). Suchasna protykorozijna izoliacija u truboprovidnomu transporti (3-tia chastyna). Lviv – Kyiv, 288.
  19. Fiterer, Ye. P., Bondaletov, V. G., Anikanova, L. A., Grigorjeva, M. A., Slavgorodskaja, O. I. (2011). Polychenije gidroizoliacyonnych mastik na osnove neftianych bitumov, modificyrovannych neftepolimernymi smolami. Lakokrasochnyje materialy i ich primenenije, 1 (2), 85–89.
  20. Grynyshyn, О., Bratychak, M., Krynytskiy, V., Donchak, V. (2008). Petroleum resins for bitumens modification. Chemistry&Chemical Technology, 2 (1), 47–53.
  21. Pérez-Lepe, A., Martínez-Boza, F. J., Gallegos, C. (2006). High temperature stability of different polymer-modified bitumens: A rheological evaluation. Journal of Applied Polymer Science, 103 (2), 1166–1174. doi: 10.1002/app.25336
  22. Buketov, A., Stuchliak, P., Levyckyj, V. (2008). Doslidzennia adgezijnoi micnosti і zalyshkovych napruzen u modyfikovanych epoksydnych kompozytach. Visnyk TDTU, 13 (4), 31–40.
  23. Woods, R. W., Letinski, D. J., Febbo, E. J., Dzamba, C. L., Connelly, M. J., Parkerton, T. F. (2007). Assessing the aquatic hazard of commercial hydrocarbon resins. Ecotoxicology and Environmental Safety, 66 (2), 159–168. doi: 10.1016/j.ecoenv.2005.11.004
  24. Dolgov, M. A., Zubrecka, N. A., Buketov, A., Stuchliak, P. (2012). Vykorystannia metodu matematychnogo planuvannia eksperymentu dla ocinky adgezijnoi micnosti zachysnych pokryttiv, modyfikovanych energetychnymy polamy. Problemy prochnosti, 1, 111–118.
  25. Zoorob, S. E., Castro-Gomes, J. P., Pereira Oliveira, L. A., O’Connell, J. (2012). Investigating the Multiple Stress Creep Recovery bitumen characterisation test. Construction and Building Materials, 30, 734–745. doi: 10.1016/j.conbuildmat.2011.12.060
  26. Demchenko, N. R., Pryhodko, S. V., Kurmakova, I. M., Tretiak, O. P. (2008). Sukcesija korozijnogo mikrobnogo ugrupovannia pry formuvanni bioplivky na stalevij poverchni za prysutnocti organichnych spoluk. Mikrobiologija i biotechnologija, 3 (4), 95–100.
  27. Shmarov, V. M., Labunec, V. F., Belevcev, R. Ya., Kozlova, I. O., Prysiazniuk, V. V. (2015). Utvorennia antyfrykcijnych mineralnych sirkovmisnych biopokryttiv na konstrukcijnych materialach. Visnyk Vinnyckogo politechnicznogo instytutu, 1, 162–167.
  28. Kurmakova, I. M. (2014). Naukovi osnovy stvorennia policyklichnych nitrogenvmisnych polifunkcionalnych ingibitoriv korozii stali ta mechanizm ich dii. Kyiv, 40.
  29. Nykulyshyn, I. (2015). Naukovi osnovy i technologija katalitychnoi kooligomeryzacii pobichnych produktiv pirolizu vuglevodniv. Lviv, 40.
  30. Rypka, G. M., Serednyckyj, Ya., Nykulyshyn, I. Ye., Pikh, Z. G., Voronchak, T. O. (2013). Modyfikacija naftobitumnych mastykovych pokryttiv naftopolimernymy smolamy. Voprosy chimii i chimicheskoj technologii, 5, 107–109.
  31. Lopes, F. A., Morin, P., Oliveira, R., Melo, L. F. (2006). Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. Journal of Applied Microbiology, 101 (5), 1087–1095. doi: 10.1111/j.1365-2672.2006.03001.x
  32. Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, A. V., Schadt, C. W., Wall, J. D. (2011). Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation. Applied and Environmental Microbiology, 77 (12), 3938–3951. doi: 10.1128/aem.02993-10
  33. Brown, S. D., Gilmour, C. C., Kucken, A. M., Wall, J. D., Elias, D. A., Brandt, C. C. et. al. (2011). Genome Sequence of the Mercury-Methylating Strain Desulfovibrio desulfuricans ND132. Journal of Bacteriology, 193 (8), 2078–2079. doi: 10.1128/jb.00170-11
  34. Traore, A. S., Hatchikian, C. E., Le Gall, J., Belaich, J.-P. (1982). Microcalorimetric Studies of the Growth of Sulfate-Reducing Bacteria: Comparison of the Growth Parameters of Some Desulfovibrio Species. Journal of Bacteriology, 149 (2), 606–611.
  35. Nykułyszyn, I., Pich, Z., Urbaniak, W. (2009). Sposoby zagospodarowania odpadów przemysłu naftowego na Ukrainie. Rekultywacja i rewitalizacja terenów zdegradowanych. Praca zbiorowa pod redakcja prof. Grzegorza Maliny, 1, 261–270.
  36. Gnativ, Z. Ya., Nykulyshyn, I. Ye., Pikh, Z.G., Rypka, A. M., Voronchak, T. O. (2012). Oderzannia temnych naftopolimernych smol katalitychnoju spivpolimeryzacijeju vazkoi smoly pirolizu z frakcijeju С9 produktiv pirolizu dyzelnogo palyva. Visnyk Nacionalnogo terchnichnogo universytetu “KHPI”, 68 (974), 176–179.
  37. Gnativ, Z., Nykulyshyn, I., Rypka, A., Voronchak, T., Pikh, Z. (2014). Study of aromatic and terpenic hydrocarbons catalytic cooligomerization regularities. Chemistry & Chemical Technology, 4, 401–410.
  38. Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145 (1-2), 42–82. doi: 10.1016/j.cis.2008.08.011
  39. Ibragimov, H. (2014). Synthesis of Petroleum Polymer Resin by Catalytic Polymerization of Pyrocondensate and Its Fractions. American Chemical Science Journal, 4 (1), 82–96. doi: 10.9734/acsj/2014/6320
  40. Bratychak, M., Grynyshyn, O., Shyshchak, O., Romashko, I., Waclawek, W. (2007). Obtaining of petroleum resins using pyrolysis by-products. Petroleum resins with hydroxyl groups. Chemia і inzynieria ekologichna, 14 (2), 225–234.
  41. Bratychak, М., Grynyshyn, O., Astakhova, O., Shyshchak, O., Waclawek, W. (2008). Petroleum resins with hydroxyl groups modified with styrene. Ecological chemistry and engineering, 15 (3), 387–396.

Published

2016-04-27

How to Cite

Nykulyshyn, I., Pikh, Z., Gnatush, S., Gnativ, Z., & Chajkivska, R. (2016). Investigation of the bio-resistance of insulating protective coatings modified by polymeric petroleum resins. Eastern-European Journal of Enterprise Technologies, 2(6(80), 31–39. https://doi.org/10.15587/1729-4061.2016.65483

Issue

Section

Technology organic and inorganic substances