An investigation of the reduction model power influence on the accuracy of the object’s position assessment using relative method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75593

Keywords:

astrometric reduction, digital frame, celestial object, reduction model, assessment of accuracy indicators

Abstract

We investigated the influence of the reduction model power on the accuracy of the object’s position assessment using the relative method. The research considered reduction polynomials of the third and fifth power, their influence on the accuracy of the celestial object’s position assessment and distribution of reference stars in the frame. The result of the analysis showed the presence of a sinusoidal component in the dependence of the residual of parameters of celestial objects when the cubic reduction model is used. It also showed almost complete elimination of this component in case of using the fifth-power reduction model, which increased the number of reference stars in the frame’s edges as well as accuracy indicators of position assessments of celestial objects. The assessment criteria of significance of the reduction model coefficients using the Fisher's f-criteria proved the validity of application of the polynomial model with the power, that is higher than cubic.

The results of the research can be used to improve the accuracy of estimation of celestial objects positions in the frame in the CCD-automated processing systems, which assess the position of objects in the entire field of view of the telescope.

Author Biographies

Artem Pohorelov, Kharkiv National University of Radio Electronics Nauki ave., 14, Kharkiv, Ukraine, 61166

Department of Electronic computer

Vadym Savanevych, Uzhhorod National University Narodna squ., 3, Uzhhorod, Ukraine, 88000

Doctor of Technical Sciences, Professor

Department of Informative and Operating Systems and Technologies

Serhii Udovenko, Kharkiv National University of Radio Electronics Nauki ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Electronic computer

References

  1. Pankaj, J. (2015). An introduction to astronomy and astrophysics. Boca Raton: CRC Press, 365.
  2. Kieran, J. E., Mohamed, M. G. (2014). Astronomy and Big Data. Springer Press, 104. doi: 10.1007/978-3-319-06599-1
  3. Kiselev, A. A. (1989). Teoreticheskie osnovanija fotograficheskoj astrometrii. Moscow: Nauka, Gl. red. Fiz-mat. lit, 264.
  4. Sasian, M. J. (2013). Introduction to aberrations in optical imaging systems. Edinburgh: Cambridge University Press, 261.
  5. Duma, D. P. (2007). Zagal'na astrometrіja. Kyiv: Naukova dumka, 600.
  6. Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., Zacharias, M. I. (2013). The fourth us naval observatory CCD astrograph catalog (UCAC4). The Astronomical Journal, 145 (2), 44. doi: 10.1088/0004-6256/145/2/44
  7. Roeser, S., Demleitner, M., Schilbach, E. (2010). The PPMXL catalog of positions and proper motions on the ICRS. Combining USNO-B1.0 and the two micron all sky survey (2MASS). The Astronomical Journal, 139 (6), 2440–2447. doi: 10.1088/0004-6256/139/6/2440
  8. Fedorov, P. N., Akhmetov, V. S., Shulga, V. M. (2014). The reference frame for the XPM2. Monthly Notices of the Royal Astronomical Society, 440 (1), 624–630. doi: 10.1093/mnras/stu291
  9. Akhmetov, V. S., Fedorov, P. N., Velichko, A. B., Shulga, V. M. (2015). The kinematics parametersof the Galaxy using data of modern astrometric catalogues. Odessa Astronomical Publications, 28 (2), 154–157.
  10. Andruk, V. M., Pakuliak, L. K., Golovnia, V. V. et. al. (2015). Catalog of pasitions and B-magnitudes of stars in the circumpolar region of Northen Sky Survey (FON) project. Odessa Astronomical Publication, 28 (2), 192–195.
  11. Andruk, V. M., Relke, H., Protsyuk, Yu. I. et. al. (2015). Comparision of zero zone catalogues of the FON program based on the Kyiv and Kitab observations. Odessa Astronomical Publications, 28 (2), 188–191.
  12. Robert, V., De Cuyper, J.-P., Arlot, J.-E., De Decker, G., Guibert, J. et. al. (2011). A new astrometric reduction of photographic plates using the DAMIAN digitizer: improving the dynamics of the Jovian system. MNRAS, 415 (1), 701–708.
  13. Eglitis, I., Eglite, M., Shatokhina, S. V. et. al. (2016). Asteroids from digitised processing of photographic observations in Baldone. AstroPlate.
  14. Protsyuk, Yu. I., Andruk, V. M., Relke, H. (2016). The original astrometric software package for digitized photographic plates. Astroplate.
  15. Bezkrovnyj, M. M., Kozhuhov, A. M., Savanevich, V. E., Annenkov, A. B., Sokovikova, N. S. (2012). Ocenka mestopolozhenija ob’ekta na PZS-kadre pri srednem vremeni jekspozici. Sistemi obrobki іnformacіi, 7 (105), 44–50.
  16. Savanevich, V. E., Brjuhoveckij, A. B., Kozhuhov, A. M., Dikov, E. N. (2010). Ocenka jekvatorial'nyh koordinat asteroida po ocenkam ego koordinat na CCD-kadre. Sistemi obrobki іnformacіi, 6 (87), 172–179.
  17. Zacharias, N., Gaume, R., Dorland, B., Urban, S. E. Catalog Information and Recomendations, U.S. Naval Observatory. Available at: http://ad.usno.navy.mil/star/star_cats_rec.shtml
  18. Savanevich, V. E., Movsesjan, Ja. S., Dihtjar, N. Ju. (2016). Metod formirovanija vnutrennego kataloga obektov, nepodvizhnyh na serii kadrov. Sistemi obrobki іnformacіi, 8 (145), 45–49.
  19. Robin, M. G. (1985). Spherical Astronomy. New York: Cambridge Univercity Press, 536.
  20. Řeřábek, M., Páta, P., Koten, P. (2008). Processing of the Astronomical Image Data obtained from UWFC Optical Systems. Image Reconstruction from Incomplete Data V, 7076. doi: 10.1117/12.794858
  21. Maksutov, D. D. (1984). Astronomicheskaja optika. Moscow: Nauka, gl. red. Fiz-mat. lit., 272.
  22. McLean, I. S. (2008). Electronic Imaging in Astronomy. Detectors and Instrumentation. Berlin: Springe-Praxis, 552. doi: 10.1007/978-3-540-76583-7
  23. Smith, G. E. (2010). Nobel Lecture: The invention and early history of the CCD. Reviews of Modern Physics, 82 (3), 2307–2312. doi: 10.1103/revmodphys.82.2307
  24. Ermakov, S. M., Zhyhliavskyi, A. A. (1987). Matematycheskaia teoryia optymalnoho eksperymenta. Moscow: Nauka, 320.
  25. Draper, N. R., Smith, H. (1998). Applied regression analysis. John Wiley & Sons, Inc., 716. doi: 10.1002/9781118625590
  26. Bezkrovnyj, M. M., Dashkova, A. N., Sokovikova, N. S., Savanevich, V. E., Brjuhoveckij, A. B. (2015). Research methods of statistical characteristics of CCD-measurement of position and brightness of the Solar system objects. Technology audit and production reserves, 2 (2 (22)), 26–37. doi: 10.15587/2312-8372.2015.40820
  27. Savanevych, V. E., Briukhovetskyi, O. B., Sokovikova, N. S., Bezkrovny, M. M., Vavilova, I. B., Ivashchenko, Y. M. et. al. (2015). A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates. Monthly Notices of the Royal Astronomical Society, 451 (3), 3287–3298. doi: 10.1093/mnras/stv1124
  28. Savanevych, V. E., Briukhovetskyi, A. B., Ivashchenko, Y. N., Vavilova, I. B., Bezkrovniy, M. M., Dikov, E. N. et. al. (2015). Comparative analysis of the positional accuracy of CCD measurements of small bodies in the solar system software CoLiTec and Astrometrica. Kinematics and Physics of Celestial Bodies, 31 (6), 302–313. doi: 10.3103/s0884591315060045
  29. Savanevych, V. E., Briukhovetskyi, A. B., Kozhukhov, A. M., Dykov, E. N., Vlasenko, V. P. (2010). Program CoLiTec avtomatyzyrovannoho obnaruzhenyia nebesnykh tel so slabym bleskom. Kosmichna nauka i tekhnolohiia, 18 (1), 39–46.

Downloads

Published

2016-08-30

How to Cite

Pohorelov, A., Savanevych, V., & Udovenko, S. (2016). An investigation of the reduction model power influence on the accuracy of the object’s position assessment using relative method. Eastern-European Journal of Enterprise Technologies, 4(4(82), 42–49. https://doi.org/10.15587/1729-4061.2016.75593

Issue

Section

Mathematics and Cybernetics - applied aspects