Optimal synthesis of digital counters in the fibonacci codes with the minimal form of representation

Authors

  • Oleksiy Borysenko Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007, Ukraine
  • Igor Kulyk Sumy State University Rimskiy-Korsakova st., 2, Sumy, Ukraine, 40007, Ukraine
  • Svitlana Matsenko Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007, Ukraine
  • Olga Berezhna Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007, Ukraine
  • Aleksandr Matsenko Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007, Ukraine https://orcid.org/0000-0001-7466-9135

DOI:

https://doi.org/10.15587/1729-4061.2016.75596

Keywords:

Fibonacci numbers, minimal form, Fibonacci counters, noise immunity, high performance speed

Abstract

At present, requirements for speed performance and noise immunity in the work of the counters increase. Among the existing structures, the Fibonacci counters meet such requirements. Their drawback is transfer while calculating from the minimal form of representation of the Fibonacci numbers to the maximal form and, consequently, to the use of operations of convolution and deconvolution, which decreases speed, noise immunity and increases required hardware expenses.

We propose for the Fibonacci counters to use only minimal form of representation of the Fibonacci numbers, which excludes operations of convolution and deconvolution. Based on it, the method of the Fibonacci calculation in the minimal form is developed and its logical model is built in the form of a set of logical operations, whose fulfillment leads to the Fibonacci calculation. It gives the possibility to design the method of synthesis of the Fibonacci counters with the optimal ratio of performance speed, noise immunity and amount of hardware expenses for specific conditions of its work.

The advantage of the Fibonacci counters with the minimal form is their increased noise immunity. It is due to both the nature of the Fibonacci calculation itself, which works in the excess codes, and to the absence of transfers to the maximal form, where it is permitted to have the forbidden combinations. In this case, the probability of detecting errors grows with an increase in the number of bits of counter.

Author Biographies

Oleksiy Borysenko, Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007

Doctor of Technical Sciences, Professor

Department of Electronics and Computer Technics

Igor Kulyk, Sumy State University Rimskiy-Korsakova st., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Electronics and Computer Technics

Svitlana Matsenko, Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Engineer of the First Category

Department of Electronics and Computer Technics

Olga Berezhna, Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Electronics and Computer Technics

Aleksandr Matsenko, Sumy State University Rimskiy-Korsakova str., 2, Sumy, Ukraine, 40007

Candidate of Economic Sciences, Associate Professor

Department of Economics and Business Administration 

References

Goryachev, A. E., Degtyar, S. A. (2012). Metod generacii perestanovok na osnove faktorialnyx chisel s ispolzovaniem dopolnyayushhego massiva. Visnik Sumskogo derzhavnogo unіversitetu. Serіya Tehnichni nauki, 4, 86–93.

Borysenko, O. A., Kalashnikov, V. V., Protasova, T. A., Kalashnikova, N. I.; Silva, R. N. (Ed.) (2014). A New Approach to the Classification of Positional Numeral Systems. Series Frontiers of Artificial Intelligence and Applications (FAIA). IOS Press (The Netherlands), 262, 441–450.

Vorobev, N. N. (1969). Chisla Fibonachchi. Мoscow: Nauka, 144.

Monteiro, P., Newcomb, R. (1976). Minimal and Maximal Fibonacci Representations: Boolean Generation. The Fibonacci Quarterly, 14 (1), 613–638.

Vajda, S. (1989). Fibonacci & Lucas Numbers, and the Golden Section. Ellis Horwood limited, 192.

Staxov, A. P. (1977). Vvedenie v algoritmicheskuyu teoriyu izmerenij. Мoscow: Sov. radio, 288.

Staxov, A. P. (2012). Kody Fibonachchi i zolotoj proporcii kak alternativa dvoichnoj sistemy schisleniya. Chast 1. Germany: Academic Publishing, 305.

Gupta, N., Agarval, A., Goyal, G. (2015). United States Patent No. US8983023 B2. Digital Self-Gated Binary Counter. No. US 13/935,552; declared: 04.07.2013; published: 17.03.2015, 23.

Yeh, C.-H., Parhami, B., Wang, Y. (2000). Designs of Counters with Near Minimal Counting/Sampling Period and Hardware Complexity. Pacific Grove, CA, USA, 894–898. doi: 10.1109/acssc.2000.910642

Thamaraiselvan, K., Gayathri, C., Divya, N. (2013). A High Speed CMOS Parallel Counter Using Pipeline Partitioning. International Journal of Engineering Research, 2 (8), 491–495.

Bindu, S., Vineeth, V., Paulin, J. (2015). A Review on High Speed CMOS Counter Using Altera MAX300A. International Journal of Advanced Research in Computer and Communication Engineering, 4 (12), 589–592. doi: 10.17148/ijarcce.2015.412140

Azarov, O. D., Chernyak, O. І., Murashhenko, O. G. (2015). Shvidkodіyuchij reversivnij fіbonachchіеvij lіchilnik. Іnformacіjnі texnologіі ta komp’yuterna іnzhenerіya, 1, 27–32.

Azarov, O. D., Chernyak, O. І. (2015). Metod shvidkodіyuchoі obernenoі lіchbi z lіnіjnim zrostannyam aparaturnix vitrat pri naroshhuvannі rozryadnostі. Visnyk Vinnyc'kogo politehnichnogo instytutu, 2 (119), 57–61.

Azarov, O. D., Chernyak, O. І., Murashhenko, O. G. (2014). Metod pobudovi shvidkodіyuchix fіbonachchіеvix lіchilnikіv. Problemy informatyzacii' ta upravlinnja, 2 (46), 5–8.

Borysenko, O. A., Stahov, O. P. (2014). Pat. na vynahid № 104939 U Ukrajna. MPK H03K 23/00 (2014.01). Pereshkodostijkyj lichyl'nyk impul'siv Borysenko-Stahova. № 201210506; zajavl. 05.09.2012; opubl. 25.03.2014, Bjul. № 6.

Published

2016-08-30

How to Cite

Borysenko, O., Kulyk, I., Matsenko, S., Berezhna, O., & Matsenko, A. (2016). Optimal synthesis of digital counters in the fibonacci codes with the minimal form of representation. Eastern-European Journal of Enterprise Technologies, 4(4(82), 4–10. https://doi.org/10.15587/1729-4061.2016.75596

Issue

Section

Mathematics and Cybernetics - applied aspects