The effect of organoclays on the fire-proof efficiency of intumescent coatings

Authors

  • Lubov Vakhitova L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160 http://orcid.org/0000-0003-4727-9961
  • Varvara Drizhd L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160 http://orcid.org/0000-0002-8113-0768
  • Nadezhda Тaran L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160 http://orcid.org/0000-0002-4638-3241
  • Konstantin Кalafat L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160 http://orcid.org/0000-0001-5038-0601
  • Volodymyr Bessarabov Kyiv National University of Technology and Design Nemyrovych-Danchenko str., 2, Kyiv, Ukraine, 01011 http://orcid.org/0000-0003-0637-1729

DOI:

https://doi.org/10.15587/1729-4061.2016.84391

Keywords:

organoclay, fire protection, montmorillonite, intumescent compositions, coefficient of swelling, fire resistance limit

Abstract

We explored thermal transformations of the intumescent system (ammonium polyphosphate, pentaerythrite, melamine, copolymer of styrene acrylate) in the temperature range of 200–600 °C in the presence of organomodified montmorillonites and titanium nano-oxide. Coefficients of swelling, masses of coke residues are determined and morphology of the formed coke layer is investigated. These data were used for the development of formulations for effective fire-retardant coatings of the intumescent type, which do not contain halogen fire retardants.

As a result of the research, it was established that montmorillonite and organic clays on its base (cetyltrimethylammonium-montmorillonite and tallow bis-hydroxyethyl methyl ammonium-montmorillonite), in contrast to titanium nano-oxide, significantly inhibit the processes of swelling at the initial stages of fire action. At temperatures above 500 °C, the intumescent compositions, which contain organic clays, form a durable and dense coke layer. IR-spectrometric studies of the samples of coke with the participation of organoclays demonstrate deceleration of oxidation processes and decomposition of polymeric protective layer in contrast to the composition with titanium oxide and nano-oxide.

Based on these observations, we give practical recommendations regarding the preparation of formulations for fire-retardant coatings for the building structures depending on the required limit of fire resistance. It is recommended to use additives of nano-oxides for the class of fire resistance R 30–R 45; and for the class of fire resistance R 60 and above, organoclay should be added to the intumescent system. This assumption was confirmed by firing tests of steel columns.

The results we obtained may be used for the design of new fire-retardant coatings of the intumescent type with improved efficiency and ecological safety.

Author Biographies

Lubov Vakhitova, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160

PhD, Senior Researcher

Varvara Drizhd, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160

Postgraduate Student

Nadezhda Тaran, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160

PhD, Senior Researcher

Konstantin Кalafat, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine Kharkivske highway str., 50, Кyiv, Ukraine, 02160

Junior Researcher

Volodymyr Bessarabov, Kyiv National University of Technology and Design Nemyrovych-Danchenko str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor, Senior Researcher

Department of Industrial Pharmacy

References

Wang, J. (2015). The protective effects and aging process of the topcoat of intumescent fire-retardant coatings applied to steel structures. Journal of Coatings Technology and Research, 13 (1), 143–157. doi: 10.1007/s11998-015-9733-9

Mariappan, T. (2016). Recent developments of intumescent fire protection coatings for structural steel: A review. Journal of Fire Sciences, 34 (2), 120–163. doi: 10.1177/0734904115626720

Puri, R. G., Khanna, A. S. (2016). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research. doi: 10.1007/s11998-016-9815-3

Aziz, H., Ahmad, F., Zia-ul-Mustafa, M. (2014). Effect of Titanium Oxide on Fire Performance of Intumescent Fire Retardant Coating. Advanced Materials Research, 935, 224–228. doi: 10.4028/www.scientific.net/amr.935.224

Aziz, H., Ahmad, F. (2016). Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Progress in Organic Coatings, 101, 431–439. doi: 10.1016/j.porgcoat.2016.09.017

Duquesne, S., Bachelet, P., Bellayer, S., Bourbigot, S., Mertens, W. (2013). Influence of inorganic fillers on the fire protection of intumescent coatings. Journal of Fire Sciences, 31 (3), 258–275. doi: 10.1177/0734904112467291

Kiliaris, P., Papaspyrides, C. D. (2010). Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Progress in Polymer Science, 35 (7), 902–958. doi: 10.1016/j.progpolymsci.2010.03.001

Hu, Y., Wang, X., Li, J. (2016). Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites. Industrial & Engineering Chemistry Research, 55 (20), 5892–5901. doi: 10.1021/acs.iecr.6b00480

Dong, Y., Wang, G., Su, Q. (2013). Influence of nano-boron nitride on anti-aging property of waterborne fire-resistive coatings. Journal of Coatings Technology and Research, 11 (5), 805–815. doi: 10.1007/s11998-013-9538-7

Lu, H., Hu, Y., Li, M., Song, L. (2008). Effects of Charring Agents on the Thermal and Flammability Properties of Intumescent Flame-Retardant HDPE-based Clay Nanocomposites. Polymer-Plastics Technology and Engineering, 47 (2), 152–156. doi: 10.1080/03602550701816001

Dogan, M., Bayramlı, E. (2010). Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites. Polymers for Advanced Technologies, 22 (12), 1628–1632. doi: 10.1002/pat.1650

Rathi, S., B. Dahiya, J. (2012). Polyamide 66/nanoclay Composites: Synthesis, Thermal And Flammability Properties. Advanced Materials Letters, 3 (5), 381–387. doi: 10.5185/amlett.2012.5354

Cai, Y., Hu, Y., Song, L., Lu, H., Chen, Z., Fan, W. (2006). Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochimica Acta, 451 (1-2), 44–51. doi: 10.1016/j.tca.2006.08.015

Nenahov, S. A., Pimenova, V. P. (2010). Phisiko-himiya vspenivayuschiksya ognezaschitnykh pokrytiy na osnove polifosfata ammoniya. Pozharovzryvobezopasnost, 19 (8), 11–58.

Vakhitova, L. M., Taran, N. A., Drizhd, V. L., Lapushkin, M. P., Popov, A. F. (2013). Intumescentni komposycii. Vplyv na strukturu koksovogo sharu. Chim. Promyslovist Ukrainy, 5, 9–15.

Han, Z., Fina, A., Malucelli, G., Camino, G. (2010). Testing fire protective properties of intumescent coatings by in-line temperature measurements on a cone calorimeter. Progress in Organic Coatings, 69 (4), 475–480. doi: 10.1016/j.porgcoat.2010.09.001

Vakhitova, L. M., Kalafat, K. V., Lapushkin, M. P. (2007). Vognesachysna efeltyvnist intumescentnykh system. Sumisna diya carbonyzuyuchoi spoluky ta donora kysloty. Chim. Promyslovist Ukrainy, 4, 41–46.

Vakhitova, L. N., Taran, N. A., Lapushkin, M. P., Drizhd, V. L., Lakhtarenko, N. V., Popov, A. F. (2012). Tverdofazniy aminolis v sisteme polifosfat ammoniya-pentaeritrit-amin. Teoret. i eksperim. chimiya, 3, 163–167.

DSTU B V.1.1-14:2007. Zakhyst vid pozhezhi. Kolony. Metod vyprobuvannya na vognestiykist (EN 1365-4:1999, NEQ) (2008). Kyiv: Derzhspozhyvstandart Ukrainy, 8.

Published

2016-12-27

How to Cite

Vakhitova, L., Drizhd, V., Тaran N., Кalafat K., & Bessarabov, V. (2016). The effect of organoclays on the fire-proof efficiency of intumescent coatings. Eastern-European Journal of Enterprise Technologies, 6(10 (84), 10–16. https://doi.org/10.15587/1729-4061.2016.84391