Modeling the electrostatic control over depth of the introduction of intelligent sensors into a polymer composite material

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.91659

Keywords:

intelligent polymeric composites, intelligent sensors, electrostatic method of nondestructive control

Abstract

Intelligent polymeric composites are materials that can remotely transmit data on the properties of material, including the stress-strained state. It is necessary for the implementation of online monitoring of critically important parts and nodes. Obtaining data is achieved by the introduction of intelligent sensors into a polymer composite. Intelligent sensor is a miniature measuring device consisting of one or more transducers of measured magnitudes. They form an output signal, which is used for the remote transmission, storage and use in the control systems.

A problem of obtaining data about the depth of the introduction of intelligent sensors into polymer composites is a multifaceted one. On one hand, the question is about technology and equipment for the introduction of sensors into polymer composites, the interpretation of data on deformations and other properties received from the sensors, and is connected to polymer engineering. On the other hand, the question of receiving signals about the depth of placement of intelligent sensors and their further processing is associated with nondestructive control.

The present article investigated the possibility of receiving a signal about the depth of placement of intelligent sensors that are introduced at a certain depth into a polymer composite material, using the electrostatic method of nondestructive testing. We performed a simulation of the distribution of electric potential in the material. Through modeling, we determined maximum possible depth of the introduction of intelligent sensor into polymer material, which can be measured with a given accuracy, which is 40H, where H is the relative magnitude of the size of electrodes.

The technique applied might be used to any dielectric material after adjusting the properties of material. The obtained results allow the determination by numerical simulation of maximum depth of the introduction of intelligent sensors into a polymer material. 

Author Biographies

Igor Ivitskiy, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of chemical, polymer and silica engineering

Vladimir Sivetskiy, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Professor, Head of Department

Department of chemical, polymer and silica engineering

Victor Bazhenov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of devices and systems for non-destructive testing

Darya Ivitska, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of devices and systems for non-destructive testing

References

  1. Mihajlin, Ju. A. (2008). Special'nye polimernye kompozicionnye materialy. Sankt-Peterburg: Nauchnye osnovy i tehnologii, 660.
  2. Barisci, J. N., Wallace, G. G. (1996). Conducting polymer sensors. Trends in Polymer Science, 4 (9), 307–311.
  3. Wallace, G., Spinks, G., Kane-Maguire, L., Teasdale, P. (2008). Conductive Electroactive Polymers: Intelligent Polymer Systems. Northwest: CRC Press, 263. doi: 10.1201/9781420067156
  4. Hoffman, A. S. (1995). “Intelligent” polymers in medicine and biotechnology. Macromolecular Symposia, 98 (1), 645–664. doi: 10.1002/masy.19950980156
  5. Carpi, F., Smela, E. (2009). Biomedical Applications of Electroactive Polymer Actuators. Chichester: Wiley, 496. doi: 10.1002/9780470744697
  6. Wallace, G. G. (1992). Intelligent polymer systems-concepts, approaches present uses and potential applications. Material Forum, 16 (2), 111–115.
  7. Ivitskiy, I. I., Sokolskiy, O. L., Kurylenko, V. M. (2016). Simulation of intelligent sensors dipping into the melting polymer composite. Technology audit and production reserves, 5 (3 (31)), 22–26. doi: 10.15587/2312-8372.2016.81236
  8. Ivitskyi, I. I. (2014). Polymer wall slip modelling. Technology audit and production reserves, 5 (3 (19)), 8–11. doi: 10.15587/2312-8372.2014.27927
  9. Ivic'kyj, I. I., Sokol's'kyj, O. L., Sivec'kyj, V. I., Mikul'onok, I. O. (2013). Chyslove modeljuvannja vplyvu prystinnogo sharu na proces techii' polimeru v pererobnomu obladnanni. Himichna promyslovist' Ukrai'ny, 6, 34–37.
  10. Sivetskiy, V. I., Sokolskiy, A. L., Ivitskiy, I. I., Kolosov, A. E., Kurilenko, V. M. (2016). Methods and apparatus for the manufacture of intelligent polymer composites. Bulletin of NTU “KhPI”. Series: Mechanical-technological systems and complexes, 4, 95–101.
  11. Kljuev, V. V. (1995). Nerazrushajushhyj kontrol' y dyagnostyka. Moscow: Mashynostroenye, 656.
  12. Mamishev, A. V. (1999). Interdigital dielectrometry sensor design and parameter estimation algorithms for non-destructive materials evaluation. Massachusetts, 709.
  13. Bozzi, E., Bramanti, M. (2000). A planar applicator for measuring surface dielectric constant of materials. IEEE Transactions on Instrumentation and Measurement, 49 (4), 773–775. doi: 10.1109/19.863922
  14. Von Guggenberg, P. A., Zaretsky, M. C. (1995). Estimation of one-dimensional complex-permittivity profiles: a feasibility study. Journal of Electrostatics, 34 (2-3), 263–277. doi: 10.1016/0304-3886(94)00037-w
  15. Mamishev, A. V., Takahashi, A. R., Du, Y., Lesieutre, B. C., Zahn, M. (2002). Parameter estimation in dielectrometry measurements. Journal of Electrostatics, 56 (4), 465–492. doi: 10.1016/s0304-3886(02)00068-2
  16. Gimple, M., Auld, B. A. (1989). Variable geometry capacitive probes for multipurpose sensing. Research in Nondestructive Evaluation, 1 (2), 111–132. doi: 10.1007/bf01577576
  17. Schlicker, D. E. (2005). Imaging of absolute electrical properties using electroquasistatic and magnetoquasistatic sensor arrays. Massachusetts, 390.
  18. Diamond, G. G., Hutchins, D. A. (2006). A New Capacitive Imaging Technique for NDT. Eur. Conf. NDT. Germany.
  19. Diamond, G., Hutchins, D. A., Leong, K. K., Gan, T. H. (2007). Electrostatic Capacitive Imaging: A New NDE Technique. AIP Conference Proceedings. doi: 10.1063/1.2718037
  20. Suh Nam, P., Tse, M.-K. (1983). An electrostatic charge decay technique for nondestructive evaluation of nonmetallic materials. Int. Adv. Nondestruct. Test., 9, 192–226.
  21. Shibata, T., Hashizume, H., Kitajima, S., Ogura, K. (2005). Experimental study on NDT method using electromagnetic waves. Journal of Materials Processing Technology, 161 (1-2), 348–352. doi: 10.1016/j.jmatprotec.2004.07.049
  22. Wen, J., Xia, Z., Choy, F. (2011). Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement. Composites Part B: Engineering, 42 (1), 77–86. doi: 10.1016/j.compositesb.2010.08.005
  23. Bazhenov, V. G., Ivic'ka, D. K., Gruzin, S. V. (2013). Udoskonalenyj elektrostatychnyj metod nerujnivnogo kontrolju. Metody ta prylady kontrolju jakosti, 2, 26–28.
  24. Bazhenov, V. G., Ivic'ka, D. K., Gruzin, S. V. (2013). Patent No. 90117 UA. Elektrostatychnyj sposib nerujnivnogo kontrolju. MPK G01B 7/00. No. u201315066; declareted: 23.12.2013; published: 12.05.2014, Bul. No. 9, 2.
  25. Bazhenov, V. G., Ivic'ka, D. K., Ovcharuk, S. A., Munenko, V. L. (2014). Patent No. 109357 UA. Elektrostatychnyj amplitudno-fazovyj sposib nerujnivnogo kontrolju. MPK G 01 V 7/00, G 01 N 27/22. No. a201404947; declareted: 12.05.14; published: 10.08.15, Bul. No. 15, 5.
  26. Grinberg, G. A. (1948). Izbrannye voprosy matematicheskoj teorii jelektricheskih i magnitnyh javlenij. Moscow: Izd. AN SSSR, 727.
  27. Sakharov, A. S., Kolosov, A. E., Sivetskii, V. I., Sokolskii, A. L. (2013). Modeling of Polymer Melting Processes in Screw Extruder Channels. Chemical and Petroleum Engineering, 49 (5-6), 357–363. doi: 10.1007/s10556-013-9755-z
  28. Sakharov, A. S., Sivetskii, V. I., Sokolskii, A. L. (2011). Extrusion molding of polymers with allowance for near-wall slip. Chemical and Petroleum Engineering, 47 (3-4), 231–237. doi: 10.1007/s10556-011-9451-9

Downloads

Published

2017-02-20

How to Cite

Ivitskiy, I., Sivetskiy, V., Bazhenov, V., & Ivitska, D. (2017). Modeling the electrostatic control over depth of the introduction of intelligent sensors into a polymer composite material. Eastern-European Journal of Enterprise Technologies, 1(5 (85), 4–9. https://doi.org/10.15587/1729-4061.2017.91659