Development of specialized modeling complex to study control systems of movable maritime objects

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.91966

Keywords:

controller, propulsion device, underwater vehicle, specialized modeling complex, control accuracy

Abstract

We designed, created, and tested a specialized modeling complex for examining and assessment of effectiveness of control systems for electric drives of direct and alternating current, which includes software and electromechanical parts. The latter is a metrologically certified training-research set-up "Testing Stand SV-1", that allows conducting experimental studies with required accuracy. We presented characteristics and capabilites of electromechanical part of the modeling complex. The possibility is demonstrated to synthesize control systems for a propulsion device with barounloaded induction motor at rectilinear motion of underwater vehicle with different types of regulators and their subsequent correction by means of the specialized modeling complex.

Experimental studies conducted on the specialized modeling complex of control system confirmed effectiveness of the received laws of control during motion of underwater vehicle under arbitrary law of change in its horizontal rectilinear speed, the discrepancy between results of computer simulation and experimental research is 5–8 %. The results we obtained are implemented in teaching process, and are used to solve relevant scientific, research and military tasks.

Author Biographies

Yana Volyanskaya, Admiral Makarov National University of Shipbuilding Heroiv Stalingrady ave., 9, Mykolayiv, Ukraine, 54025

PhD, Associate Professor

Department of electrical equipment of courts and informative safety

Sergey Volyanskіy, Admiral Makarov National University of Shipbuilding Heroiv Stalingrady ave., 9, Mykolayiv, Ukraine, 54025

PhD

Department of electrical equipment of courts and informative safety 

References

  1. Lukomskij, Ju. A., Peshehonov, V. G., Skorohodov, D. A. (2002). Navigacija i upravlenie dvizheniem sudov. Sankt-Peterburg: Jelmor, 360.
  2. Izrancev, A. V., Kiselev, L. V., Matvienko, Ju. V., Vaulin, Ju. V. (2004). Navigacija i upravlenie v podvodnom prostranstve. Mehatronika, avtomatizacija, upravlenie, 11, 68–74.
  3. Filaretov, V., Yukhimets, D. (2010). Synthesis of Automatic System for Correction of Program Signal of the Underwater vehicle’s Movement on Spatial Trajectory. Control Automation and Systems ICCAS 2010. Korea, 126–131.
  4. Landau, I., Lozano, R., M'Saad, M., Karimi, A. (2011). Adaptive Control. Communications and Control Engineering. Springer-Verlag London, 587. doi: 10.1007/978-0-85729-664-1
  5. Yuh, J., Marani, G., Blidberg, D. R. (2011). Applications of marine robotic vehicles. Intelligent Service Robotics, 4 (4), 221–231. doi: 10.1007/s11370-011-0096-5
  6. Romanovskij, G. F., Blincov, V. S., Rodin, I. A. (2004). Sovremennoe sostojanie i perspektivy razvitija podvodnyh apparatov v Ukraine. Proceedings of the 5-th International Conference on Unconventional Electromechanical and Electrical Systems. Szczecin, 107–117.
  7. Sagalevich, A. M. (2011). Podvodnye apparaty v nauchnyh issledovanijah i podvodno-tehnicheskih rabotah. Sovremennye metody i sredstva okeanologicheskih issledovanij. Moscow, 115–117.
  8. Blincov, V. S. (2007). Sovremennye problemy sozdanija jelektrooborudovanija i avtomatiki podvodnyh apparatov. Radioelektronni komp’juterni systemy, 5 (24), 90–98.
  9. Kavallo, Je., Mikkelini, R., Juhimec, D. A., Filaretov, V. F. (2008). Osobennosti konstrukcii i sistemy upravlenija avtonomnogo podvodnogo apparata s odnim dvizhitelem dlja ego tochnogo peremeshhenija v prostranstve. Problemy mashinostroenija i nadezhnosti mashin, 6, 98–107.
  10. Filaretov, V. F., Juhimec, D. A., Mursalimov, Je. Sh., Guo, J.-H., Shengwei, H. (2013). Jeksperimental'noe issledovanie sistemy adaptivnogo formirovanija programmnyh signalov dvizhenija podvodnyh apparatov. Materialy 6-oj Vserossijskoj mul'tikonferencii MKPU, 215–219.
  11. Santhakumar, M., Kim, J. (2011). Modeling, simulation and model reference adaptive control of autonomous underwater vehicle-manipulator systems. Proc. of 11th International Conference on Control, Automation and Systems. South Korea, 643–648.
  12. Juhimec, D. A., Filaretov, V. F., Juhimec, D. A. (2011). Razrabotka metodov sinteza adaptivnyh sistem upravlenija prostranstvennym dvizheniem podvodnyh apparatov. Sb. nauchnyh statej IAPU DVO RAN. Vladivostok: IAPU DVO RAN, 82–95.
  13. Lebedev, A. V., Filaretov, V. F. (2009). Analiz sistemy vtorogo porjadka s peremennoj strukturoj i neideal'nost'ju perekljuchajushhego ustrojstva. Avtometrija, 42 (2), 21–28.
  14. Korol', Ju. M. (2004). Vlijanie gidrodinamicheskih poter' na mehanicheskie harakteristiki kapsulirovannyh upravljaemyh asinhronnyh dvigatelej podvodnyh apparatov. Zbirnyk naukovyh prac' Nacional'nogo universytetu korablebuduvannja. Mykolaiv: NUK, 6, 15–24.
  15. Kiselev, L. V., Inzarcev, A. V., Matvienko, Ju. V. (2006). Sozdanie intellektual'nyh ANPA i problemy integracii nauchnyh issledovanij. Podvodnye issledovanija i robototehnika, 1, 6–17.
  16. Bobkov, V. A., Bobkov, V. A., Juhimec, D. A., Mel'man, S. V., Borisov, Ju. S. (2007). Programmnyj kompleks modelirovanija prostranstvennogo dvizhenija avtonomnogo podvodnogo apparata. Mehatronika, avtomatizacija, upravlenie, 1, 8–13.
  17. Webots. Cyberrobotics. Available at: http://www.cyberbotics.com/
  18. RobSim. DinSoft. Available at: http://www.robsim.dynsoft.ru
  19. Robotic Studio. Microsoft Corporation. Available at: https://www.microsoft.com/en-us/download/details.aspx?id=29081
  20. Shandrov, B. V., Chudakov, A. D. (2007). Tehnicheskie sredstva avtomatizacii. Moscow: Izdatel'skij centr «Akademija», 368.
  21. Terehov, V. M., Osipov, O. I.; Terehov, V. M. (Ed.) (2006). Sistemy upravlenija jelektroprivodov. Moscow: Izdatel'skij centr «Akademija», 304.
  22. Filaretov, V. F., Lebedev, A. V., Juhimec, D. A. (2005). Ustrojstva i sistemy upravlenija podvodnyh robotov. Moscow: Nauka, 270.
  23. Ageev, M. D. (2005). Avtonomnye podvodnye roboty. Sistemy i tehnologi. Moscow: Nauka, 398.
  24. Blincov, V. S., Voljans'kyj, S. M. (2015). Udoskonalennja avtomatychnogo keruvannja rushijno-kermovym kompleksom pidvodnogo aparata. Vestnyk NTU "KhPI". Problemy avtomatyzovanogo elektropryvodu. Teorija i praktyka, 12, 238–243.

Downloads

Published

2017-02-21

How to Cite

Volyanskaya, Y., & Volyanskіy S. (2017). Development of specialized modeling complex to study control systems of movable maritime objects. Eastern-European Journal of Enterprise Technologies, 1(9 (85), 26–33. https://doi.org/10.15587/1729-4061.2017.91966

Issue

Section

Information and controlling system