Development of the comprehensive method forquality assessment of plastic parts

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.93198

Keywords:

comprehensive method, quality assessment, quality indicator, basicindicator, plastic part

Abstract

In present work we constructed the tree of quality indicators of plastic parts. A generalized algorithm is proposedto estimatethe quality level of plastic parts, which is the basis for the developmentof method forassessing the quality level of plastic parts. The designed algorithm, in contrast to those existing, includes a stage for the estimation of error in quality level, which will make it possible to improveaccuracy of determining thequality level of plastic parts. We devised acomprehensive method for evaluating quality of plastic parts. Its essence is in the fact that the obtained method allows us to determine anintegratedindicator of quality of plastic part, which includesa proposed nomenclature of quality indicators, represented in the form of the tree and the proposed generalized indicator of quality of plastic part.

The developed comprehensive method differs from those existing by the proposed additional stage – the estimation of error in quality. Its essence is that it is necessary to determine: error in the number of properties that characterize quality; error in determiningthe weight coefficients;wear and aging of the materials that the MD are made of; error in the calculations of quality indicators;and permissible instrument errors. All these components will in turn make it possible to increase accuracy in the quality assessment of plastic parts.

Results of present researchinto quality indicators ofpart’s PMdemonstrated that for the selected part, one part of the values of relative quality indicators is larger than unity, and another part is lower, which does not make it possible to unambiguously estimate the quality level for the givenpart. The designed method is useful in the development of mathematical and CAD software for technological equipment. It might be applied in the fabrication of thermoplastic parts for radio-electronic equipment.

Author Biographies

Igor Nevludov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor, Head of Department

Department of computer-integrated technologies, automation and mechatronics

Svetlana Sotnik, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of computer-integrated technologies, automation and mechatronics

Andrii Frolov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of computer-integrated technologies, automation and mechatronics

 

Nataliia Demska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Senior Lecturer

Department of computer-integrated technologies, automation and mechatronics

References

  1. Gordon, Dzh. M. (2012). Upravlenie kachestvom lit'ja pod davleniem. Sankt-Peterburg: Nauchnye osnovy i tehnologii, 823.
  2. Shumejker, A., Kakar, R., Kac, L. et. al.; Leon, R. (Ed.) (2002). Upravlenie kachestvom. Robastnoe proektirovanie. Metod Taguti. Moscow: «SEJFI» 384.
  3. Braginskij, V. A. (1971). Tehnologija pressovanija tochnyh detalej iz termoreaktivnyh plastmass. Leningrad: Khimija, 256.
  4. Krosbi, F. B. (1979). Kachestvo besplatno. Iskusstvo ubezhdat' v neobhodimosti kachestva. New-York: MakGro-Hill, 309.
  5. Barvinskij, I. A., Barvinskaja, I. E. (2005). Komp'juternyj analiz lit'ja termoplastov: osnovy analiza techenija v Moldflow Plastics Insight (osnovnye principy analiza, ocenka tehnologichnosti lit'evyh izdelij i press-form, analiz prichin braka). Moscow: OOO "Inzhenernaja firma AB Universal", 550.
  6. Basov, N. I., Broj, V. (1985). Tehnika pererabotki plastmass. Moscow: Himija, 528.
  7. Gurova, T. A. (1991). Tehnicheskij kontrol' proizvodstva plastmass i izdelij iz nih. Moscow: Vysshaja shkola, 255.
  8. Korotchenko, A. (2011). Sposoby obespechenija kachestva otlivok pri lit'e pod davleniem. LAP LAMBERT Academic Publishing, 56.
  9. Gordon, M. J. (2010). Total quality process control for injection molding. John Wiley & Sons, 746. doi: 10.1002/9780470584491
  10. Sotnik, S. V., Mos'pan, D. V. (2014). Obzor metodov ocenki kachestva detalej iz plastmass. Tehnologija priborostroenija, 1, 42–47.
  11. Sotnik, S. V. (2012). Metod ocenki urovnja kachestva polimernyh detalej. Tehnologija priborostroenija, 2, 9–13.
  12. Gluhov, V. V., Gasjuk, D. P. (2015). Upravlenie kachestvom. Standart tret'ego pokolenija. Sankt-Peterburg: Piter, 384.
  13. Kavade, M. V. (2012). Parameter Optimization of Injection Molding of Polypropylene by using Taguchi Methodology. IOSR Journal of Mechanical and Civil Engineering, 4 (4), 49–58. doi: 10.9790/1684-0444958
  14. Tellaeche, A., Arana, R. (2013). Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7 (7), 1391–1395.
  15. Robin, K. (2016). Quality Management in Plastics Processing. Elsevier, 370.
  16. Bangert, P., Cajaraville, P. et. al. (2012). Real-Time Quality Control of Injection Molding. Produktionsforschung, 1–6.
  17. Kanu, R. C. (2013). Study of Process Variability of the Injection Molding of Plastics Parts Using Statistical Process Control (SPC). American Society for Engineering Education.
  18. Dang, X.-P. (2014). General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory, 41, 15–27. doi: 10.1016/j.simpat.2013.11.003
  19. Steinko, V. V. (2012). Optimizacija lit'ja plastmass pod davleniem. Sankt-Peterburg: Professija, 620.
  20. Glazman, B. S. (2014). Avtomatizirovannoe i robotizirovannoe lit'e pod davleniem. Rostov-na-Donu: Izd. centr DGTU, 137.
  21. Sotnik, S. V. (2014). Avtomatizacija vybora bazovyh znachenij pokazatelej kachestva plastmassovyh detalej. Tehnologija priborostroenija, 3, 51–58.
  22. Rajalingam, S., Bono, A., Sulaiman, J. (2012). Identifying the critical moulding machine parameters affecting injection moulding process by basic statistical process control tools. International Journal Engineering and Physical Science, 6, 358–364.
  23. Nevljudov, I. Sh., Sotnik, S. V. (2009). Tehnologicheskoe obespechenie tochnosti razmerov pri formoobrazovanii plastmassovyh izdelij. Jelektronnaja komponentnaja baza. Sostojanie i perspektivy razvitija, 183–186.
  24. Nevljudov, I. Sh., Andrusevich, A. A., Sotnik, S. V. (2009). Metod rascheta oformljajushhih detalej formoobrazujushhej osnastki dlja tehnologicheskogo obespechenija zhiznennogo cikla plastmassovyh izdelij RJeA. Radiotehnika, 156, 240–243.
  25. Shah, V. (2009). Spravochnoe rukovodstvo po ispytanijam plastmass i analizu prichin ih razrushenija. Sankt-Peterburg: Nauchnye osnovy i tehnologii, 746.
  26. Yang, Y., Chen, X., Lu, N., Gao, F. (2016). Injection Molding Process Control, Monitoring, and Optimization. doi: 10.3139/9781569905937
  27. Stanek, M., Manas, D., Manas, M., Suba, O. (2011). Optimization of Injection Molding Process by MPX. 13-th WSEAS International Conference on Automatic Control, Modelling & Simulation, 212–216.
  28. Gol'dberg, I. E. (2011). Puti optimizacii lit'evoj osnastki. Ee velichestvo lit'evaja forma. Sankt-Peterburg: Nauchnye osnovy i tehnologii, 360.

Downloads

Published

2017-02-28

How to Cite

Nevludov, I., Sotnik, S., Frolov, A., & Demska, N. (2017). Development of the comprehensive method forquality assessment of plastic parts. Eastern-European Journal of Enterprise Technologies, 1(1 (85), 18–26. https://doi.org/10.15587/1729-4061.2017.93198

Issue

Section

Engineering technological systems