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1. Introduction

Natural soils are heterogeneous at the macro level. This 
heterogeneity manifests itself in two aspects. The first aspect 
is that the soil array consists of sub-areas, which host soils 
that are different in their physical-chemical and mechanical 
properties. The second aspect is that in the soil array there are 
thin layers of other soils, which, quite often, differ greatly in 
their characteristics from the main soil. Such layers create sig-
nificant difficulties both in terms of construction practice and 
in terms of mathematical modeling and computer simulation 
of the physical-chemical processes in these heterogeneous soil 
arrays. In particular, one of the practical aspects is the intensi-
fication of shear processes in which precisely these layers may 
serve as the sliding surfaces. From the point of view of math-
ematical modeling, the issue is the discontinuity of functions, 
which characterize the examined processes, on such inclusions. 
This requires the use of methods that make it possible to find 
generalized solutions to the relevant boundary-value problems. 
Moreover, the characteristics of such inclusions may depend 
on the defining functions of the processes studied (head, tem-
perature, humidity, the concentration of chemicals, and their 
gradients). And this requires the modification of conjugation 
conditions and leads to the nonlinear boundary-value problems 

in heterogeneous areas. This, in turn, leads to changes in the 
forecast calculations of filtration processes in such soils and, 
as a result, affects their safe operation. At the same time, due 
to the nonlinearity of influences and complex interdependence 
of processes, it is advisable that studying such processes should 
involve computer simulation and mathematical modeling.

To solve this problem, we have modified the conjugation 
conditions, which has made it possible to improve the math-
ematical model of elastic filtration in the soil with a thin 
inclusion.

2. Literature review and problem statement

Study [1] noted that Darcy’s law may be violated at high 
and relatively low filtration rates. The criterion in the first 
case is the Reynolds number, in the second ‒ the viscosity of 
a liquid (attributing it to the class of non-Newtonian), and 
the initial head gradient. 

The author of [2] suggested the following dependence 
between the filtering coefficient k and the head gradient I:
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ment implies the modification of conjugation conditions for heads on 
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influence of such dependences cannot be neglected
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where k0, ku is the initial and boundary (at I→∞) filtration 
coefficient; Ik is the critical head gradient; k  is the empirical 
constant, which, as noted by the author, is similar to the 
constant of semi-saturation known in biology and physical 
chemistry. Using the above dependence, the author derived 
the following important partial cases

0, if ;kk k I I= =

, if ;uk k I→ → ∞

if .u kk k k I= = −

The nonlinear function of the dependence of the filtra-
tion coefficient on the head gradient used in work [3] was the 
power dependence in the following form

( ) 0 ,k I k I β=

where I is the head gradient. At β=1, we obtain a linear de-
pendence; at β=0, we obtain k=k0. This dependence is similar 
to the function proposed in [4]. Dependences of the filtration 
coefficient on the head gradient are also given in [5]. 

The authors of [6] used Hansbo’s flow mathematical 
equations for the filtration rate in saturated clays:
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c and k are the filtration coefficients at small and large head 
gradients; i1 is the initial head gradient. The following de-
pendence is used to show the dependence of the filtration 
coefficient on a change in the porosity coefficient

( )0 0lg lg ,k k  k e e c= − −

where k0 is the initial filtration coefficient corresponding to 
the initial porosity coefficient e0; ck is the permeability index.

In addition, the above work examined specific samples 
of clay soil both experimentally and using the constructed 
mathematical model based on the above dependences, which 
made it possible to find appropriate numerical solutions. 
There was a good agreement between the resulting approxi-
mate solutions and the data from field experiments. 

Study [7] reported an experimental study into water fil-
tration in low-permeable porous environments at small head 
gradients [7]. It was established that in a separate case the 
movement of liquid is described by the nonlinear law. The 
phenomenon is elucidated by the presence of layers of bound 
water in the medium’s pores. The explanation was substanti-
ated and confirmed by field experiments.

It is noted in work [8] that, since the thickness of pores in 
clay soils varies from 0.01 to 0.1 μm, the interaction of “solid 
parts‒liquid” significantly affects the flow in these pores. The 
result was the assumption, put forward and substantiated, 
about the nonlinearity of the filtration law in saturated clay 
soils. In particular, the law in the following form was proposed

2
1 ,

1  
a

u a h
b u

 + = −∇  +

where a1, a2, b are the parameters that are established 
experimentally; u is the filtration rate, h is the head. The 
authors of the work used the proposed law in the theory of 
consolidation. Experimental verification of that law was also 
carried out.

Study [9] numerically examined the mathematical model 
of filtration in a cracked-porous environment. In this case, it 
is believed that Darcy’s law holds in a porous environment, 
while in the cracks, where the rate of filtration is greater, the 
Darcy-Forechheimer law is obeyed.

The movement of liquids in thin capillaries and the 
formation of a near-boundary layer of the bound fluid was 
experimentally investigated in [10]. Depending on the mag-
nitude of the head gradient in the liquid, the thickness of 
such a near-boundary layer can be up to 30 % of the diameter 
of the capillary. As a result, at low pressure, the nonlinear 
effects start to manifest themselves. At the same time, the 
dependences for the velocity of fluid movement in capillaries 
differ from those consistent with Darcy’s law. The authors 
generalized experimental research for porous environments 
and conducted numerical experiments for relevant tasks in 
the oil industry.

Several effects were taken into consideration in work [11]. 
First, nonlinear Darcy’s law was used as a filtration law 
(non-Darcy Hansbo’s flow). Second, the permeability coef-
ficient was considered variable and dependent on the coeffi-
cient of porosity. These dependences are taken into consid-
eration in the general theory of soil consolidation (general 
theory of consolidation of the theory of Bio-Bio). 

Under Hansbo’s nonlinear filtration law,
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where u is the filtration rate, k is the filtration coefficient at 
relatively large gradients of head, when Darcy’s law holds; k 
is the filtration parameter used in the power part of the non-
linear law; m is the indicator of power in the filtration law at 
small gradients of head, i0 is the initial head gradient; il is the 
gradient that makes it possible to overcome the maximum 
energy of the bound water and set it into motion. 

Taking into consideration the condition of continuity 
and differentiation, at i=il, we obtain
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As regards the filtration coefficient, the following depen-
dence is proposed

0
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α =  α is in 0.5 ⁓2, and the total value in 0.5 ⁓1.0 

 ( )1
,

3 x y zp = σ + σ + σ′ ′ ′ ′  ,  ,  x y zσ σ σ′ ′ ′  are the effective stresses; 

p′  is the average effective stress; 0p′  is the initial value of the 
average effective stress.

Paper [12] considered the issue of filtration in poorly per-
meable soils [12]. The mathematical filtration model takes 
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into consideration the presence of the initial head gradient 
and the nonlinear dependence of porous fluid density on 
head. As a result, the first factor required the modification of 
Darcy’s law while the second factor led to the inclusion of a 
filtration term in the equation, which depends on the square 
of the head gradient in the porous liquid. Moreover, the ex-
istence of the initial head gradient predetermined the need 
to study the problem in the area with a moving boundary. 
The reported numerical experiments showed a significant 
difference in predictive calculations once the quadratic term 
of the head gradient is neglected in the presence of the initial 
head gradient.

Special attention should be paid to the issue related to 
thin soil inclusions and conjugation conditions for the de-
fining functions of the filtration and geomigration processes 
on them.

Thus, the soil array can contain thin inclusions from 
natural soils. Also, such inclusions are created artificially 
using geotextile [13]. As shown in [14], the presence of 
such inclusions significantly changes the forecast calcula-
tions of filtration processes, heat-salt transfer processes, the 
stressed-strained state in natural and artificial soil arrays. 
In terms of mathematical modeling and numerical methods, 
the existence of such inclusions requires the modification of 
approaches to their (processes) mathematical notation, the 
statement of proper boundary-value problems, their numer-
ical solution.

At present, the scientific literature provides a large body 
of research into the properties of argillaceous inclusions. 
Quite often, such inclusions are created as artificial anti-fil-
tration barriers in the design and construction of production 
waste storage facilities in order to minimize the propagation 
of pollutants into groundwater. Work [15] describes the 
properties of such geosynthetic argillaceous inclusions. The 
authors noted their low hydraulic conductivity and the abil-
ity to detect semi-permeable membrane properties, which 
limit the migration of solutions through bentonite.

Paper [16] examines bentonites that make it possible to 
limit the migration of pollutants. The so-called Fukakusa 
clay with different amounts of dry bentonite (5 %, 10 %, 
15 % and 20 %) was investigated. 

Article [17] explored the interconnected processes of 
clay consolidation and the migration of contaminated sub-
stances through an argillaceous inclusion with semi-perme-
able properties. The result of numerical modeling showed 
that depending on the conditions, consolidation can exert a 
significant impact on the breakout time of pollutants. It also 
has an impact on the distribution of concentration in argil-
laceous inclusions not only during the consolidation process 
but also long after its completion. The effect of consolidation 
increases with an increase in the thickness of an inclusion, 
an increase in the applied load, a decrease in loading time, an 
increase in the values of effective diffusion coefficient, etc.

Work [13] reviewed different types of diffusion coeffi-
cients regarding the migration of radionuclides in geoprotec-
tive barriers. Three potentially significant complex problems 
have been identified: a barrier system geochemistry, the ef-
fect of a surface and/or interlayer diffusion, and the presence 
of semi-permeable membrane properties as a result of the 
inclusion’s anions behavior.

Paper [18] addresses argillaceous barriers to waste stor-
age facilities, behaving like semi-permeable membranes. The 
equations of fluid movement and migration of saline solu-
tions through the so-called argillaceous membrane barriers 

are given. It was established that the flow of the solution 
(pollutant) decreases compared to the case when the inclu-
sion has no semi-permeable properties of the membrane. The 
issues relating to diffusion through argillaceous membranes 
were considered in [19]. 

When constructing mathematical models of geomigration 
processes in environments with inclusions, the corresponding 
boundary-value problems should be correct. Therefore, such 
models should be supplemented with the conjugation condi-
tions for unknown functions on such inclusions.

Papers [20, 21] examine parabolic equations that de-
scribe the process of heat-and-mass transfer in an area 
with a thin low-permeable inclusion under the conjugation 
conditions of the “concentrated natural source” type. A new 
statement of such problems was proposed, in which the prin-
cipal parabolic equation changes to a system of differential 
equations of the first order with coefficients from classes of 
the generalized functions. The authors proved theorems of 
the existence and uniformity of a generalized solution.

Work [22] investigates a problem about the diffusion of an 
impurity in a band containing an inner layer of other material. 
It is believed that at the contact boundaries of layers, the con-
centration of impurity particles changes in a jump-like manner, 
although their flow through these boundaries is continuous.

The issues of mathematical modeling of the filtration and 
geomigration processes in heterogeneous environments are 
systematically studied in [14]. In particular, the conjugation 
condition for heads in the filtration problem is derived from 
the assumption that the head h is linearly changed from h- to 
h+ along the normal n to the cross-section of the thin inclu-
sion γ of thickness l. That is,

( ), ,
h h

h t h
l

+ −
−−

ξ = ⋅ξ +  0 l≤ ξ ≤

and 

.
h h h

l

+ −∂ −
=

∂ξ

Here h+ and h- are the head values on an inclusion at ξ=l 
and ξ=0, respectively. The coordinate system Oξ is tied to 
the normal to the inclusion. Then the limit conjugation con-
dition for a non-ideal contact takes the following form [14]

( ) 0, ,
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k
d

±

γ
= − ⋅

ξ
u n
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( ) [ ]0, .
k

h
l

±

γ
= −u n

In the above condition, a constant quantity is used as the 
filtration coefficient k0 of a thin inclusion. However, the soil 
filtration coefficient depends on the head gradients. And this 
requires a modification of the conjugation conditions.

3. The aim and objectives of the study

The aim of this study is to quantify the impact of the 
existence of thin inclusions and the modified conjugation 
conditions for the defining functions of the filtration and 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/5 ( 107 ) 2020

44

geomigration processes on them. This would make it possible 
to draw conclusions about the degree of significance or insig-
nificance of changes in the forecast calculations of filtration 
characteristics in a heterogeneous array of soil, which con-
tains thin weakly permeable inclusions.

To accomplish the aim, the following tasks have been set:
– to build an improved mathematical model of an elastic 

filtration mode in a heterogeneous array of soil, which con-
tains thin weakly permeable inclusions;  

– to find numerical finite-element solutions to the corre-
sponding nonlinear boundary-value problem with the modi-
fied conjugation conditions, which describes the constructed 
mathematical model;  

– to conduct a series of numerical experiments and 
analyze them for the quantitative impact of the presence of 
thin inclusions and modified conjugation conditions on head 
jumps on these inclusions.

4. Mathematical model of elastic filtration in the soil with 
a thin inclusion

Consider the process of elastic filtration in a heteroge-
neous array of soil with a thin inclusion in a one-dimensional 
case, whose mathematical model is described by the follow-
ing boundary-value problem [14]:

( ) ( ), , , ,
h h

k h h f h x t
t x x
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Here, Ω1=(0; ξ), Ω2=(ξ; l), 0<ξ<l; hl(t), h0(x), Q(h, t) are the 
known functions, h(X, t) is the head in a porous liquid; k is the 
filtration coefficient; f(X, t) is the function that sets the inten-
sity of the internal sources (drains) of a liquid. The coefficient 
η is called the coefficient of rock elastic capacity. According 
to [23, 24], at short depths (10–50 m), for argillaceous rocks 
 ( ) 4 1

4 7 10 .
m

−η = ÷ ⋅  At depths of 50‒200 m, for limestone, 

marls, clays, and siltstones, ( ) 4 1
1 4 10 .

m
−η = ÷ ⋅  The function  

 
h0(x) must be continuous at each of the segments [0; ξ], [ξ; l].

In this mathematical model, formula (11) is a modified 
conjugation condition for heads, derived on the basis of the 
following considerations. 

By analogy with [25], suppose that due to the subtlety 
of an inclusion the filtration processes in the cross-section 
of a given inclusion are stationary (or at least quasi-station-
ary). Thus, consider the following filtration problem for an 
inclusion:

( , ) 0,
d dh

k h h
d d

γ 
− ∇ = ζ ζ 

 0 ,d< ζ <    (6)

( )0 ,h h−=  ( ) .h d h+=   (7)

Here, kγ(h, ∇h) is the filtration coefficient of a thin in-
clusion that is nonlinearly dependent on heads and their 
gradients. From equation (6), we obtain

( ) 1, ,
dh

k h h h
d

γ ∇ =
ζ

where h1=const is a not yet known constant. Then
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d
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,
x
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ζ
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where h2=const is also a not yet known constant. Consider-
ing (8) and boundary conditions (7), we obtain a system of 
linear algebraic equations (SLAE)
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We obtain from this SLAE
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where [h]=h+–h– is the jump of heads on an inclusion. So, 
from (6), (7) we obtain
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The result is
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k h h
γ

γ

ζ
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ζ
∇
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According to [14], the conjugation condition will be 
derived on the basis of the law of preservation of the flow of 
liquid through a single area of the transverse cross-section 
of the surface of an inclusion along the normal over a small 
period of time Δt. Since the flow

( ) ( )
,

dh
q k h h t u t

d
γ ζ

= − ∇ ∆ = ∆ ζ 
   

and
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then 
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d
± γ
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ζ
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ζ
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(10) and (9) produce the final modified conjugation 
condition for a non-ideal contact for heads on an inclusion, 
whose filtration coefficient depends on the heads themselves 
and their (head) gradients
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h
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γ
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    (11)

If ( ) 0 const,k h kγ γ= =  the condition (11) produces a clas-
sic conjugation condition for a non-ideal contact [5].

5. A finite-element scheme to solve the problem of elastic 
filtration in the area with an inclusion

Similarly to [14], we shall introduce a series of defini-
tions and spaces. Let H0 be the space of the functions ( ),xφ  
which, at each interval (0; ξ), (ξ; l), belong to the Sobolev 
space ( )1

2 ,W Ω  and acquire zero values at the ends of the 
segment [0, l], where, for the function h(x, t), the boundary 
conditions of the first kind are assigned.

Let H be the space of the functions v(x, t), integrated  
 with square together with their first derivatives ,

v
t

∂
∂

 
v
x

∂
∂

 at 

each interval (0; ξ), (ξ; l), (0; ],t T∀ ∈  (0; ξ), (ξ; l), and satisfy 
the same boundary conditions of the first kind as the func-
tion h(x, t). Here, T>0. 

Multiply equation (1) and initial condition (4) by any func-
tion ( ) 0,x Hϕ ∈  integrating them along the segment [0, l] and 
taking into consideration conjugation conditions (5), we obtain
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Definition 2. 1. The function ( ), ,h x t H∈  which ( ) 0x H∀ϕ ∈  
satisfies integral relations (12), (13), is termed the generalized 
solution to the boundary-value problem (1) to (5). 

The approximate generalized solution to the bound-
ary-value problem (1) to (5) is found in the form

( ) ( ) ( )
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where ,   2, ,i i Nφ =  are the basis vector functions of the fi-
nite-dimensional subspace 0 0,M H∈  and the functions 1φ  
are used for the approximation of heterogeneous boundary 
conditions of the first kind in (2).

The totality of vector functions that can be represented 
in form (14) gives rise to the set .M H⊂

Definition 2. 2. The approximated generalized solution 
to the boundary-value problem (1) to (5) is the func-
tion ( )ˆ , ,h x t M∈  which ( ]0,t T∀ ∈  and arbitrary function 

( ) 0x MΦ ∈  satisfies the integral ratios
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Solving problem (1) to (5) by a finite-element method 
from a weak statement(12), (13) of the problem, taking into 
consideration (14), we obtain a Cauchy problem 
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After time sampling involving a completely implicit lin-
earized difference scheme [26], system (15) produces

( )( )
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1

1 ,
p p

p p p p
+

+−
⋅ + ⋅ =

τ
A A
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where τ is the time step, A(p)=A(tp), tp=pτ. One can calculate 
the integral in the lij definition by using quadrature formulae 
and head values and their gradients’ values from the previous 
time step.

6. Results of numerical experiments and their analysis

The software implementation of the algorithm for solving 
the above boundary-value problem employed the modern 
Python visual programming technology.
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In the simulation problem, the soil layer l=30 m thick was 
considered. The depth of an inclusion level is ξ=15 m. A step 
in the variable x is 0.1 m. A time step is=0.5 day. The initial 
distribution of heads is h0(x)=1 m. At the upper boundary of 
the soil, we set the boundary condition of the first kind with 
a head value of 10 m. The following soil filtration and inclu-
sion parameters were set: k0=0.01 m/day, 0 0.0001m day,kγ =  

4 1
5 10 .

m
−η = ⋅

Results of the numerical experiment given in Table 1 
outline the following trends.

Table	1

The	values	of	heads	and	their	jumps	in	a	numerical	

experiment	for	the	case	 ( ) ( )( )0
0 ,u kk k I I

k I k
I k

− −
= +

+
			

Ik=0,	 1,k = 	ku=2k0

Inclusion thickness 
and time value

Head value at 
kγ=const

Head value at 
kγ=kγ(∇h)

h– h+ [h] h– h+ [h]

d=0.1 m 
t=12 days

6.442 4.554 1.888 6.127 5.059
1.068 

(–43 %)

d=0.3 m 
t=12 days

7.315 3.284 4.031 6.758 4.065
2.693 

(–33 %)

d=0.5 m 
t=12 days

7.768 2.669 5.099 7.203 3.426
3.777 

(–26 %)

As the thickness of an inclusion decreases, the head 
jump value decreases. However, the relative differences in 
head jumps for the cases of a variable and stable filtration 
coefficient increase from 26 % to 43 %. The “–” sign before 
relative differences means that they are reduced for the case 
of a variable filtration coefficient. The results of solving this 
problem, although it is a model, show that with such relative 
differences one must not neglect the dependence of the fil-
tration coefficient on the head gradient for thin inclusions. 

Table 2 gives the values of heads and their jumps for a 
model problem (case 2).

Table	2

The	values	of	heads	and	their	jumps	in	a	numerical	
experiment	for	the	case	k(I)=k0I β,	β=1

Inclusion thickness 
and time value

Head value at 
kγ=const

Head value at 
kγ=kγ(∇h)

h– h+ [h] h– h+ [h]

d=0.1 m 
t=12 days

6.442 4.554 1.888 5.906 5.448
0.458 

(–76 %)

d=0.3 m 
t=12 days

7.315 3.284 4.031 6.214 4.885
1.329 

(–67 %)

d=0.5 m 
t=12 days

7.768 2.669 5.099 6.513 4.384
2.129 

(–58 %)

The head values at kγ=const correspond to the use of the 
classic conjugation condition, and, at kγ=kγ(∇h), to the mod-
ified. Parentheses show a relative increase or decrease (as a 
percentage) in the head jump when applying the classic conju-
gation condition and the modified conjugation condition. In Ta-
ble 2, such relative changes range from −58 % to −76 %. At the 
same time, with an increase in the thickness of an inclusion, the 
amplitude of differences increases while the relative difference 
falls. The results of solving the model problem show that one 

must not neglect the dependence of the filtration coefficient of 
thin weakly permeable inclusions on the head gradients.

Table 3 gives the values of heads and their jumps for a 
model problem (case 3).

Table	3	

The	values	of	heads	and	their	jumps	in	a	numerical	
experiment	for	the	case	k(I)=k0I β,	β=2

Inclusion thickness 
and time value

Head value at 
kγ=const

Head value at 
kγ=kγ(∇h)

h– h+ [h] h– h+ [h]

d=0.1 m 
t=12 days

6.442 4.554 1.888 5.705 5.692
0.013 

(–99 %)

d=0.3 m 
t=12 days

7.315 3.284 4.031 6.004 5.238
0.766 

(–81 %)

d=0.5 m 
t=12 days

7.768 2.669 5.099 6.217 4.873
1.344 

(–74 %)

Results in Table 3 show that at the quadratic dependence 
of the filtration coefficient on the head gradient, the head 
jumps decrease while the relative differences, compared to 
the problem with a stable filtration coefficient, increase.

7. Discussion of results of studying the problem of elastic 
filtration in a heterogeneous soil array

By comparing the results given in Table 1 and Table 2, 
one can note that the application of the classic (kγ=const) 
and modified (kγ=kγ(∇h)) conjugation conditions produces 
different indicators of the head jump value. This difference 
ranges from −58 % to 76 %. In addition, all tables show that 
increasing the thickness of a weakly permeable inclusion in 
the soil array increases the amplitude of differences in the 
head value from above (h+) and the head value from below (h-).  
Although, in this case, the value of the relative difference 
falls. In addition, the results of our study provided informa-
tion on the form of setting a dependence of the filtration co-
efficient on the head gradient. According to data in Table 2 
and Table 3, with the quadratic dependence of the filtration 
coefficient on the head gradient, the head jumps are smaller 
compared to its linear dependence. However, there is an 
increase in the relative difference compared to the problem 
with a stable filtration coefficient.

The application of the dependence of the filtration coef-
ficient on the head gradient in the classic conjugation condi-
tions on a thin inclusion causes a series of contradictions. In 
particular, to the left and right of the inclusion, the head gra-
dients are different. And there is currently no justification for 
what kind of dependence to use (to the left or right of an inclu-
sion). In this case, the use of the modified integral conjugation 
condition has allowed us to solve the issue associated with the 
nonlinear filtration parameters of thin argillaceous inclusions 
regarding the head gradients. The proposed conjugation con-
dition takes into consideration the results of field experiments 
and is free from contradictions of the classical conjugation 
condition for the case of nonlinear dependences. The justifica-
tion of the need to modify the conjugation condition, as well 
as the results in Tables 1–3 for model problems, indicate the 
prospects for further research in this area. This is especially 
true of argillaceous soils as materials of thin inclusions whose 
nonlinearities are strongly expressed in filtration processes.
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Our study could be advanced in the following ways:
– to study the impact of other nonlinear dependences of 

the filtration coefficient on the gradient head on the magni-
tude of head jumps; 

– to study the impact of the derived dependences on 
other physical-chemical processes in soils (for example, heat 
transfer); 

– to theoretically investigate the accuracy of the derived 
finite-element solutions to boundary-value problems with 
the modified conjugation conditions.

8. Conclusions

1. We have built an improved mathematical model of 
the elastic filtration mode in a heterogeneous soil array con-
taining thin weakly permeable inclusions. The improvement 
implies the modification of conjugation conditions for heads 
on thin inclusions when the filtration coefficient of the in-
clusion itself is nonlinearly dependent on the head gradient. 
After all, the use of classic conjugation conditions for such 
nonlinear dependences faces the ambiguity of choice wheth-
er a head gradient to the left or right from a thin inclusion 
should be considered. The modified conjugation condition 
has been derived as a solution to the nonlinear boundary-val-

ue problem in a thin inclusion and thus is free from such 
contradictions.

2. The numerical solutions to the corresponding nonlin-
ear boundary-value problem have been derived by using a 
finite-element method (FEM). The schematic algorithm for 
the finite-element solution to the resulting problem is given. 
The possibility of discontinuous solutions requires the use of 
numerical methods that make it possible to find the approx-
imate generalized solutions to the relevant boundary-value 
problems. This is what justifies the application of a finite-el-
ement method in our study.

3. Numerical modeling has shown that taking into con-
sideration the dependence of filtration characteristics of an 
inclusion on the head gradients has a significant impact on the 
magnitude of head jumps. In particular, the relative difference 
in head jumps lies between 26 % and 99 % relative to the prob-
lem with a stable filtration coefficient for an inclusion.
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