THE DYNAMICS OF SINGLE CASCADE COOLING DEVICES

 STUDYING THE INFLUENCE OF THE THERMOELECTRIC MATERIALS PARAMETERS ON THE DYNAMICS OF SINGLE CASCADE COOLING DEVICES (p. 6–18)

 Vladimir Zaykov
 Research Institute <STORM>, Odessa, Ukraine
 ORCID: http://orcid.org/0000-0002-4078-3519

 Vladimir Mescheryakov
 Odessa State Environmental University, Odessa, Ukraine
 ORCID: http://orcid.org/0000-0003-0499-827X

 Yuri Zhuravlov
 National University "Odessa Maritime Academy", Odessa, Ukraine
 ORCID: http://orcid.org/0000-0001-7342-1031

 The effect of the variants of parameters of the original thermoelectric materials of the same efficiency on the operational dynamics of a single-cascade thermoelectric cooler has been examined. The variants differ by the coefficients of thermoEMF, electrical conductivity, and thermal conductivity. The study has been carried out in the range of changes in the working temperature, the rated heat load at the predefined geometry of thermoelement branches.

 The analysis was performed for the characteristic current modes of operation: maximum refrigerating capacity \(Q_{0,\text{max}} \), maximum refrigerating factor \((Q_0/I_2)_{\text{max}} \), and minimum failure rate \(\lambda_{\text{min}} \).

 We have established the relationship between the cooler dynamics and the basic parameters and reliability indicators for different current modes of operation. A possibility has been shown to reduce the time to enter a stationary mode of operation for a variant with the increased electrical conductivity of a material, by 9–10%, compared to the basic variant calculated for the averaged electrochemical parameters. The minimum time to enter a stationary regime is achieved under a mode of maximum refrigerating capacity.

 The economic feasibility of using the starting source materials with enhanced electric conductivity relates not only to the improved dynamic and reliable characteristics. Designing thermoelectric coolers is also associated with a decrease in the cost of a cooler by using materials that were considered substandard.

 The rational design of thermoelectric coolers for the systems that enable the thermal modes of electronic equipment accounts for a set of restrictive requirements. These include energy consumption, weight, and size, performance speed, reliability indicators, etc., which are inherently contradictory. The proposed selection of compromise variants of the current modes of operation for different operating conditions allows the optimized design of thermally-loaded equipment.

 Keywords: cooler, thermoelectric material, combination of parameters, electrical conductivity, dynamic characteristics, reliability indicators.

 References

 DOI: 10.15587/1729-4061.2020.194330

 DEVELOPMENT OF THE ENGINEERING PROCEDURE FOR THE THERMOTECHNICAL CALCULATION OF A BUILDING ENVELOPE WITH AIR CAMBERS AND A HEAT-REFLECTING COATING (p. 19–27)

 Ulambator Suleimenov
 M. Auezov South Kazakhstan State University, Shymkent, Republic of Kazakhstan
 ORCID: http://orcid.org/0000-0001-7798-1044

 Andrii Kostikov
 A. Podgorny Institute of Mechanical Engineering Problems of the NAS of Ukraine, Ukraine, Kharkiv
 ORCID: http://orcid.org/0000-0001-6076-1942
Abstract and References. Energy-saving technologies and equipment
The mathematical model is based on the solution of the Navier-Stokes and energy transfer equations closed by a two-parameter high-Reynolds $k-\varepsilon$ Launder-Sharma turbulence model. To describe the processes occurring at the wall, the wall function was used.

It was found that the bending of the transition from the branch to the main line, the increase in the bending radius lead to a decrease in the intensity of flow separation at the bending point and a decrease in turbulence kinetic energy in recirculation areas. The velocity field of the gas flow after it moves from the main line to the branch becomes more uniform. All this greatly affects the magnitude of hydraulic energy loss of the gas flow in the tees. In this case, the greatest energy losses were observed in the tees located at the lowest pressure points in the gas pipeline system. An analysis of the results showed that if the ratio of the bending radius of the main line and branch connection to the outer diameter is more than 0.25, then the influence of such a tee on the energy loss of the gas pipeline system is minimal. Local resistance coefficients of equal gas pipeline tees are calculated and the resulting equation for their calculation will be useful for specialists designing gas pipeline systems.

Keywords: hydrodynamic pressure, local resistance coefficient, pressure loss, bending radius, turbulent flow, Navier-Stokes equations.

References

DOI: 10.15587/1729-4061.2020.194938

BUILDING A TECHNOLOGICAL MODEL OF THE EXHAUST GAS ENERGY RECOVERY DEVICE FOR THE DIESEL ENGINE ON A SMALL-SIZED VESSEL (p. 35–42)

Olexandr Shtanko
Kherson branch of Admiral Makarov National University of Shipbuilding, Kherson, Ukraine
ORCID: http://orcid.org/0000-0003-3572-7915

Maryna Litvinova
Kherson branch of Admiral Makarov National University of Shipbuilding, Kherson, Ukraine
ORCID: http://orcid.org/0000-0002-4917-2132

Artem Andrieiev
Kherson branch of Admiral Makarov National University of Shipbuilding, Kherson, Ukraine
ORCID: http://orcid.org/0000-0002-6043-3700

Maria Andrieieva
Kherson branch of Admiral Makarov National University of Shipbuilding, Kherson, Ukraine
ORCID: http://orcid.org/0000-0002-9116-4056

Petro Savehuk
Kherson branch of Admiral Makarov National University of Shipbuilding, Kherson, Ukraine
ORCID: http://orcid.org/0000-0003-3893-0644

Recuperation systems that utilize the energy of exhaust gases from existing diesel engines are designed for large and medium-sized vessels. There is a need to develop an appropriate system to recover the energy of exhaust gases for small-sized vessels.

We have designed a technological model of the recuperation device for small vessels in the form of a thermoelectric generator (TEG) that operates on the exhaust gas energy. Technical conditions for the TEG arrangement on a vessel have been analyzed and the components of its design have been defined. We have proposed technical solutions for improving the process of energy heat transfer from gas to a TEG, namely: the use of thermoelectric modules (TEM) with an operating temperature above 1,000 °C; the application of a square shape of the pipeline cross-section, and the arrangement of a spiral-type cylinder inside the generator pipeline.

Based on the theoretical calculations, we have examined a thermal model of the thermoelectric generator and estimated the technological parameters for using TEM in order to ensure maximum value of efficiency for a TEG. The need to divide the generator into three constituent sections has been identified, which operate as separate generators. We have shown a possibility to receive up to 0.8 kW of electric energy when using a TEG provided the rotation speed of the diesel engine shaft is 1,500 rpm.

An optimal technique for utilizing the generator electric energy has been proposed, which implies the application of a motor-wheel. A motor-wheel function is to transform the excess electrical energy from a TEG into mechanical energy (to support the main engine) within a comprehensive increase in the fuel utilization efficiency. An appropriate circuit to connect a motor-wheel to the vessel’s power system has been given.

We have identified ways to improve the efficiency of a thermoelectric generator and extend the scope of its application on small vessels.
Abstract and References. Energy-saving technologies and equipment

Keywords: energy recuperation, diesel engine, small-sized vessels, thermoelectrical generator, exhaust gases.

References

14. Nanni diesel. Available at: https://sudiesel.ru/catalog/666/

17. Wolfram Support. Available at: https://support.wolfram.com/

20. Datasset: LTC3810 – 100V Current Mode Synchronous Switching Regulator Controller. Available at: https://www.allindatasheet.com/view.jsp?Searchword=Ltc3810&gclid=EAIaIQobChMI5r_2wJ-3gVjZiYCh3q7Ax4EAYAASAgEgKNgPD_BwE

DOI: 10.15587/1729-4061.2020.194642

DETERMINING THE TECHNICAL AND ECONOMIC PARAMETERS FOR DESIGNING HYBRID POWER UNITS FOR THE BUDGET SEGMENT (p. 43–49)

Oleh Smyrnyov
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0003-4881-9042

Anna Borysenko
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0001-5992-8274

Irina Trunova
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0003-0896-4115

Iaroslava Levenchenko
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0002-4979-1101

Anton Marchenko
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0002-5220-4844

The paper addresses the issue of designing environmentally friendly and energy-efficient vehicles in a budget segment based on determining the technical-economic parameters. The fuel efficiency and environmental friendliness of cars have been improved and substantiated through devising a hybrid power system based on the chosen rational technical-economic parameters. We have constructed three-dimensional dependences of energy, consumed by the unit of traction rechargeable batteries, and a relative travel range, on the mass and steady speed. Recommendations have been made on selecting the energy intensity of the unit of traction rechargeable batteries for hybrid vehicles of different mass and the desired travel range under an electricity-only mode. We have established the travel range under an electricity-only mode per a single charge of traction rechargeable batteries. The choice of a hybrid vehicle has been proposed depending on the expected average daily mileage and the energy intensity of traction rechargeable batteries. This would make it possible for a consumer to make a decision about the choice of a hybrid vehicle based on the individual planned average daily mileage.

Conceptual solutions have been developed to construct hybrid power units based on the economic principle of their design. The scientific results have been confirmed in practice using an
experimental hybrid concept based on the ZAZ Lanos Pickup. Such an approach makes hybrid vehicles more competitive and economically attractive.

Keywords: hybrid vehicle, hybrid power unit, traction rechargeable battery, energy intensity.

References

3. Electric Vehicle Outlook. Available at: https://about.bnef.com/electric-vehicle-outlook
8. Mirovoy Atlas Danyh. Available at: https://knoema.ru/atlas
13. Prius. Available at: https://www.toyota.com/prius/

DOI: 10.15587/1729-4061.2020.195203

DETERMINATION OF THE KINETICS OF THE PROCESS OF PUMPKIN SEEDS VIBRATIONAL CONVECTIVE DRYING (p. 50–57)

Grigory Kaletnik
Vinnitsa National Agrarian University, Vinnitsa, Ukraine
ORCID: http://orcid.org/0000-0002-4848-2796

Oleh Tsurkan
Vinnitsa National Agrarian University, Vinnitsa, Ukraine
ORCID: http://orcid.org/0000-0002-7218-0026

Tetiana Rimar
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: http://orcid.org/0000-0001-5784-005X

Oksana Stanislavchuk
Lviv State University of Life Safety, Lviv, Ukraine
ORCID: http://orcid.org/0000-0001-5784-005X

Experimental studies of the drying process of high-moisture pumpkin seeds in a vibrating dryer are carried out. The research is caused by the need to solve the problem of fast and high-quality post-harvest treatment with minimal cost. Existing technologies and equipment do not ensure high performance of the drying process in the post-harvest period or carry it out with significant expenses of time and resources. The main objective of the study is to determine the rational parameters of the process and equipment for drying pumpkin seeds.

As a result of the experimental studies of the kinetics of pumpkin seeds vibrational convective drying, rational process parameters were obtained, i.e. the maximum allowable temperature of the drying agent is t₀ = 46.7 °C, which corresponds to the maximum allowable heating temperature of seeds t₁ = 50 °C. At this temperature, the grain retains conditional values of germination ability and energy. The maximum allowable temperature is 0.3 °C lower than the maximum allowable heating temperature for pumpkin seeds.

The results of the study of the intensification of vibration exposure indicate a direct relationship between the vibration frequency, the greater the intensity of vibration-convection
drying, as well as a reduction in drying duration with increasing vibration amplitude.

The obtained results confirm the feasibility of using a filtration-convective vibrating dryer, which ensures compliance with rational drying parameters, i.e., temperature and speed of the drying agent, amplitude, frequency, and filling of the working chamber. The combination of these parameters allows drying the seed material with minimal cost and maintaining its high quality.

Keywords: pumpkin seeds, vibratory fluidized bed, drying speed, drying agent, vibrational and convective dryer, rational parameters, convective drying.

References

DOI: 10.15587/1729-4061.2020.196763

CREATING A MICROCLIMATIC THERMAL MODE BY THE MULTILEVEL SYSTEM FOR HEATING

INDUSTRIAL STRUCTURES (p. 57–63)

Nikolai Romanenko
Kharkiv National Technical University of Agriculture named after Petr Vasilenko, Kharkiv, Ukraine

Vladimir Romanenko
Kharkiv National Technical University of Agriculture named after Petr Vasilenko, Kharkiv, Ukraine

Nikolai Kyndenko
Kharkiv National Technical University of Agriculture named after Petr Vasilenko, Kharkiv, Ukraine

Yuri Sanin
Kharkiv National Technical University of Agriculture named after Petr Vasilenko, Kharkiv, Ukraine

A heating system for predicting the thermal state, to control and regulate the heating of technologically active zones of production facilities has been proposed. This makes it possible to ensure a high-quality level of compliance with the standards of the thermal mode at production facilities through the use of energy-saving multifunctional systems of a multi-level heating system. At the same time, the heating devices of the resistor type.
are located below the floor level and their heaters are powered by traditional and non-traditional renewable energy sources.

Modeling of thermal processes in the heating system, which was reduced to solving the problem of heat conductivity in the flat layer system, was carried out. A constituent part of this solution is to determine the floor surface temperature as a functional series, which establishes a relationship between the standards of floor surface heating and the power of energy flows in a multi-level heating system. This approach makes it possible to ensure the structural and functional control of energy flows and at the same time ensure the responsiveness and accuracy of compliance with the set standards of the thermal parameters of the microclimate of the technologically active area of industrial facilities for various functional purposes.

Keywords: forming the predefined microclimate mode, electrothermal processes, thermal conductivity, heating floor, tubular heaters.

References