Manoj Gupta

National University of Singapore, Singapore
Department of Mechanical Engineering

Scopus profile: link
Researcher ID: I-8110-2014
Google Scholar profile:
link
ID ORCID: https://orcid.org/0000-0002-2248-8700

Selected Publications:

  1. Torabi Parizi, M., Ebrahimi, G. R., Ezatpour, H. R., Gupta, M., Li, J., Guo, W. H. (2022). Trimodal hierarchical structure in the carbonaceous hybrid (GNPs+CNTs) reinforced CoCrFeMnNi high entropy alloy to promote strength-ductility synergy. Materials Science and Engineering: A, 850, 143446. doi: https://doi.org/10.1016/j.msea.2022.143446 

  2. Prasadh, S., Gupta, M., Wong, R. (2022). In vitro cytotoxicity and osteogenic potential of quaternary Mg-2Zn-1Ca/X-Mn alloys for craniofacial reconstruction. Scientific Reports, 12 (1). doi: https://doi.org/10.1038/s41598-022-12490-0 

  3. Kumar, P., Skotnicova, K., Mallick, A., Gupta, M., Cegan, T., Jurica, J. (2020). Mechanical Characterization of Graphene Nanoplatelets-Reinforced Mg-3Sn Alloy Synthesized by Powder Metallurgy. Metals, 11 (1), 62. doi: http://doi.org/10.3390/met11010062 

  4. Haghshenas, M., Song, X., Hasannaeimi, V., Mukherjee, S., Gupta, M. (2020). Magnesium–samarium oxide nanocomposites: Room-temperature depth-sensing nanoindentation response. International Journal of Lightweight Materials and Manufacture, 3 (3), 217–225. doi: http://doi.org/10.1016/j.ijlmm.2019.12.003 

  5. Johanes, M., Tekumalla, S., Gupta, M. (2019). Fe3O4 Nanoparticle-Reinforced Magnesium Nanocomposites Processed via Disintegrated Melt Deposition and Turning-Induced Deformation Techniques. Metals, 9 (11), 1225. doi: https://doi.org/10.3390/met9111225 

  6. Tekumalla, S., Nandigam, Y., Bibhanshu, N., Rajashekara, S., Yang, C., Suwas, S., Gupta, M. (2018). A strong and deformable in-situ magnesium nanocomposite igniting above 1000 °C. Scientific Reports, 8 (1). doi:http://doi.org/10.1038/s41598-018-25527-0 

  7. Penchal Reddy, M., Manakari, V., Parande, G., Ubaid, F., Shakoor, R. A., Mohamed, A. M. A., Gupta, M. (2018). Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles. Journal of Alloys and Compounds, 762, 398–408. doi: http://doi.org/10.1016/j.jallcom.2018.05.205 

  8. Alamgir, M., Nayak, G. C., Mallick, A., Tiwari, S. K., Mondal, S., Gupta, M. (2018). Processing of PMMA nanocomposites containing biocompatible GO and TiO2 nanoparticles. Materials and Manufacturing Processes, 33 (12), 1291–1298. doi: http://doi.org/10.1080/10426914.2018.1424996 

  9. Kujur, M. S., Manakari, V., Parande, G., Tun, K. S., Mallick, A., Gupta, M. (2018). Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles. Ceramics International, 44 (13), 15035–15043. doi: http://doi.org/10.1016/j.ceramint.2018.05.133 

  10. Madhan Kumar, A., Fida Hassan, S., Sorour, A. A., Paramsothy, M., Gupta, M. (2018). Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid. Journal of Materials Engineering and Performance, 27 (7), 3419–3428. doi: http://doi.org/10.1007/s11665-018-3448-x 

  11. Salehi, M., Maleksaeedi, S., Farnoush, H., Nai, M. L. S., Meenashisundaram, G. K., Gupta, M. (2018). An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium. Powder Technology, 333, 252–261. doi: http://doi.org/10.1016/j.powtec.2018.04.026