Determining the quality of milk fat dispersion in a jet-slot milk homogenizer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.213236

Keywords:

homogenization, jet-slot homogenizer, dispersion, emulsion dispersion, Weber criterion, fat globule

Abstract

One of the urgent problems in the dairy industry is to reduce power input in the process of dispersing milk fat while ensuring a high degree of homogenization. This problem can be solved through the development and implementation of a virtually unexplored jet-slot milk homogenizer. The principle of its action implies the preliminary separation of cream from whole milk and its feed into the high-velocity flow of skim milk. The homogenization process occurs by creating a sufficient difference in velocities of the disperse and dispersing phases of the milk emulsion, which is mathematically described by Weber's criterion.

Experimental studies of the effect of fat content in cream, cream feed rate, and width of the annular slot on dispersion indices during processing in the designed homogenizer have been carried out. The mathematical dependence which relates these parameters was found. It was proved that to obtain a milk emulsion with a dispersion level of 0.8 μm, the width of the annular slot should be 0.1–0.5 mm, fat content in cream 40–50 %, and the feed rate less than 40 m/s. The results of the evaluation of dispersion quality show a 7 % decrease in the average diameter of the fat globules compared to the most common values obtainable in the valve homogenizer. A refined critical value of the Weber criterion for dispersion of the fat phase of milk was determined (29 units) which indicates an increase in the intensity of the homogenization process in comparison with the jet milk homogenizer with a separate cream feed. The derived critical value of the criterion is necessary to create a theory of the process of dispersing milk fat and develop more efficient designs of milk homogenizers

Author Biographies

Kyrylo Samoichuk, Dmytro Motornyi Tavria State Agrotechnological University Bohdana Khmelnytskoho ave., 18, Melitopol, Ukraine, 72312

Doctor of Technical Sciences, Associate Professor

Department of Processing and Food Production Equipment named after professor F. Yalpachik

Alexandr Kovalyov, Dmytro Motornyi Tavria State Agrotechnological University Bohdana Khmelnytskoho ave., 18, Melitopol, Ukraine, 72312

Assistant

Department of Processing and Food Production Equipment named after professor F. Yalpachik

Vadym Oleksiienko, Dmytro Motornyi Tavria State Agrotechnological University Bohdana Khmelnytskoho ave., 18, Melitopol, Ukraine, 72312

PhD, Associate Professor

Department of Processing and Food Production Equipment named after professor F. Yalpachik

Nadiia Palianychka, Dmytro Motornyi Tavria State Agrotechnological University Bohdana Khmelnytskoho ave., 18, Melitopol, Ukraine, 72312

PhD, Associate Professor

Department of Processing and Food Production Equipment named after professor F. Yalpachik

Dmytro Dmytrevskyi, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Food and Hotel Industry Equipment named after M. I. Belyaev

Vitalii Chervonyi, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Food and Hotel Industry Equipment named after M. I. Belyaev

Dmytro Horielkov, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Food and Hotel Industry Equipment named after M. I. Belyaev

Inna Zolotukhina, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Food and Hotel Industry Equipment named after M. I. Belyaev

Alina Slashcheva, Donetsk National University of Economics and Trade named after Mikhail Tugan-Baranovsky Tramvayna str., 16, Kryvyi Rih, Ukraine, 50005

PhD, Associate Professor

Department of Technologies in Restaurant Industry, Hotel and Restaurant Business and Entrepreneurship

References

  1. Fialkova, E. A. (2006). Gomogenizatsiya. Noviy vzglyad. Sankt-Peterburg: GIORD, 392.
  2. Nuzhin, E. V., Gladushnyak, A. K. (2007). Gomogenizatsiya i gomogenizatory. Odessa: Pechatniy dom, 263.
  3. Huppertz, T. (2011). Homogenization of Milk | Other Types of Homogenizer (High-Speed Mixing, Ultrasonics, Microfluidizers, Membrane Emulsification). Encyclopedia of Dairy Sciences, 761–764. doi: https://doi.org/10.1016/b978-0-12-374407-4.00226-0
  4. Ciron, C. I. E., Gee, V. L., Kelly, A. L., Auty, M. A. E. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20 (5), 314–320. doi: https://doi.org/10.1016/j.idairyj.2009.11.018
  5. Samoichuk, K., Zahorko, N., Oleksiienko, V., Petrychenko, S. (2019). Generalization of Factors of Milk Homogenization. Modern Development Paths of Agricultural Production, 191–197. doi: https://doi.org/10.1007/978-3-030-14918-5_21
  6. Deinychenko, G., Samoichuk, K., Kovalyov, O. (2016). Constructions of jet mixing dispergators of milk fat phase. Proceedings of the Tavria State agrotechnological university, 1 (16), 219–227.
  7. Fonte, C. P., Fletcher, D. F., Guichardon, P., Aubin, J. (2020). Simulation of micromixing in a T-mixer under laminar flow conditions. Chemical Engineering Science, 222, 115706. doi: https://doi.org/10.1016/j.ces.2020.115706
  8. Roudgar, M., Brunazzi, E., Galletti, C., Mauri, R. (2012). Numerical Study of Split T-Micromixers. Chemical Engineering & Technology, 35 (7), 1291–1299. doi: https://doi.org/10.1002/ceat.201100611
  9. Samoichuk, K., Zhuravel, D., Palyanichka, N., Oleksiienko, V., Petrychenko, S., Slobodyanyuk, N. et. al. (2020). Improving the quality of milk dispersion in a counter-jet homogenizer. Potravinarstvo Slovak Journal of Food Sciences, 14, 633–640. doi: https://doi.org/10.5219/1407
  10. Jiang, B., Shi, Y., Lin, G., Kong, D., Du, J. (2019). Nanoemulsion prepared by homogenizer:The CFD model research. Journal of Food Engineering, 241, 105–115. doi: https://doi.org/10.1016/j.jfoodeng.2018.08.014
  11. Morales, J. O., Watts, A. B., McConville, J. T. (2016). Mechanical Particle-Size Reduction Techniques. AAPS Advances in the Pharmaceutical Sciences Series, 165–213. doi: https://doi.org/10.1007/978-3-319-42609-9_4
  12. Ashokkumar, M., Bhaskaracharya, R., Kentish, S., Lee, J., Palmer, M., Zisu, B. (2009). The ultrasonic processing of dairy products – An overview. Dairy Science & Technology, 90 (2-3), 147–168. doi: https://doi.org/10.1051/dst/2009044
  13. Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M. (2014). Ultrasonic techniques for the milk production industry. Measurement, 58, 93–102. doi: https://doi.org/10.1016/j.measurement.2014.08.022
  14. Bratsikhin, A., Leschenko, E., Kostenko, K. (2019). Influence of cavitation disintegration on dairy foods production. Journal of Hygienic Engineering and Design, 27, 173–177.
  15. Samoichuk, K., Zhuravel, D., Viunyk, O., Milko, D., Bondar, A., Sukhenko, Y. et. al. (2020). Research on milk homogenization in the stream homogenizer with separate cream feeding. Potravinarstvo Slovak Journal of Food Sciences, 14, 142–148. doi: https://doi.org/10.5219/1289
  16. Samoichuk, K., Kovalyov, A., Palyanichka, N., Kolodiy, A., Lebed, M. (2019). An experimental study of parameters in the slot type jet-mixing homogenizer of milk. Proceedings of the Tavria State Agrotechnological University, 2 (19), 117–129. doi: https://doi.org/10.31388/2078-0877-19-2-117-129
  17. Samoichuk, K., Kovalyov, A., Borokhov, I., Palyanichka, N. (2019). An analytical study of the energy characteristics and parameters of dispersion quality in the homogenizer of milk jet-slot type. Proceedings of the Tavria State agrotechnological university, 1 (19), 3–18.
  18. Samoichuk, K. О., Kovalyov, А. А. (2016). The mechanizms of fat globules in jet-mixing homogenizer of milk. Naukovi pratsi ONAKhT, 80 (1), 103–107.
  19. ISO 9622:2013. Milk and liquid milk products.
  20. ISO 707:2013. Milk and milk products. Guidance on sampling.
  21. Samoichuk, K., Kiurchev, S., Oleksiienko, V., Palyanichka, N., Verholantseva, V. (2016). Research into milk homogenization in the pulsation machine with a vibrating rotor. Eastern-European Journal of Enterprise Technologies, 6 (11 (84)), 16–21. doi: https://doi.org/10.15587/1729-4061.2016.86974
  22. Samoichuk, K., Kovalov, A, Ivzhenko, A. (2012). Analysis of methods of estimation of quality of homogenization of milk. Proceedings of the Tavria State agrotechnological university, 4 (12), 222–230.
  23. Kovalov, O. O., Palianychka, N. O., Lebid, M. R. (2018). Obgruntuvannia koefitsientu strumynnoi homohenizatsiyi. Ahroekolohichni aspekty vyrobnytstva ta pererobky produktsiyi silskoho hospodarstva: materialy mizhnar. nauk.-prakt. konf. Melitopol-Kyrylivka: TDATU, 46.
  24. Chapter 6.3. Homogenisers. Dairy Processing Handbook (2003). Lund, 115–122.
  25. Wang, X., Wang, Y., Li, F., Li, L., Ge, X., Zhang, S., Qiu, T. (2020). Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chemical Engineering Science, 226, 115838. doi: https://doi.org/10.1016/j.ces.2020.115838
  26. Liao, Y., Lucas, D. (2009). A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science, 64 (15), 3389–3406. doi: https://doi.org/10.1016/j.ces.2009.04.026
  27. Tartar, L. (2009). The General Theory of Homogenization. Lecture Notes, 470.
  28. Fani, A., Camarri, S., Salvetti, M. V. (2013). Investigation of the steady engulfment regime in a three-dimensional T-mixer. Physics of Fluids, 25 (6), 064102. doi: https://doi.org/10.1063/1.4809591
  29. Stankiewicz, A., Moulijn, J. A. (2002). Process Intensification. Industrial & Engineering Chemistry Research, 41 (8), 1920–1924. doi: https://doi.org/10.1021/ie011025p
  30. Hussong, J., Lindken, R., Pourquie, M., Westerweel, J. (2009). Numerical Study on the Flow Physics of a T-Shaped Micro Mixer. IUTAM Bookseries, 191–205. doi: https://doi.org/10.1007/978-90-481-2626-2_15
  31. Stepanova, L. I. (2000). Spravochnik tehnologa molochnogo proizvodstva. Vol. 1. Tsel'nomolochnye produkty. Sankt-Peterburg: GIORD, 384.
  32. Walstra, Р., Geurts, Т. J., Noomen, А., Jellema, А., Van Boekel, М. А. J. S. (1999). Dairy technology: Principles of Milk Properties and Processes. Part II: Processes. New York: Marcel Dekker Inc, 246.
  33. Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T., Saeys, W. (2020). Milk homogenization monitoring: Fat globule size estimation from scattering spectra of milk. Innovative Food Science & Emerging Technologies, 60, 102311. doi: https://doi.org/10.1016/j.ifset.2020.102311

Downloads

Published

2020-10-31

How to Cite

Samoichuk, K., Kovalyov, A., Oleksiienko, V., Palianychka, N., Dmytrevskyi, D., Chervonyi, V., Horielkov, D., Zolotukhina, I., & Slashcheva, A. (2020). Determining the quality of milk fat dispersion in a jet-slot milk homogenizer. Eastern-European Journal of Enterprise Technologies, 5(11 (107), 16–24. https://doi.org/10.15587/1729-4061.2020.213236

Issue

Section

Technology and Equipment of Food Production