Investigation of charge and discharge regimes of nanomodified heat-accumulating materials

Authors

  • Alexander Shchegolkov Tambov State Technical University Sovetskaya str., 106, Tambov, Russian Federation, 392000, Russian Federation https://orcid.org/0000-0002-4317-0689
  • Alexey Schegolkov Tambov State Technical University Sovetskaya str., 106, Tambov, Russian Federation, 392000, Russian Federation https://orcid.org/0000-0002-1838-3842
  • Nikolay Karpus Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya str., 6, Moscow, Russian Federation, 117198, Russian Federation https://orcid.org/0000-0002-1451-5932
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 4900 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2017.102888

Keywords:

heat accumulator, paraffin, modification, carbon nanotubes, thermal conductivity, heat capacity, charge/discharge

Abstract

Charge/discharge regimes of nanomodified paraffins have been studied. The nanomodification of paraffin was carried out by using the “Taunit” series nanomaterials with different morphological parameters under ultrasonic treatment. Comparative studies of thermophysical parameters (thermal conductivity and heat capacity) have been conducted for the prepared samples. Under charge/discharge regimes, the effect of “tracking thermal contact” manifests. The thermal conductivity increases to 0.48, 0.42 and 0.36 W/mºС in case of CNM-MD, CNM-M and CNM, relative to the initial thermal conductivity of 0.25 w/mºС. It has been established that the extreme on the thermal dependency graph depends on heat capacity ((57, 63 and 72 ºС for CNM, CNM-M and CNM-MD correspondingly). Modification of paraffin with carbon nanotubes allows controlling the phase-transition parameters, which allows obtaining a variety of temperature dependencies of heat capacity, thermal conductivity and physical-mechanical characteristics by combining different ratios of the “Taunit” series nanotubes and physical influences such as thermal fields and ultrasound. The heat-accumulating materials prepared in such a way allow achieving optimized operation of the heat accumulator under different temperature regimes.

Author Biographies

Alexander Shchegolkov, Tambov State Technical University Sovetskaya str., 106, Tambov, Russian Federation, 392000

PhD, Associate Professor

Department of Technics and technologies of nanomaterials production 

Alexey Schegolkov, Tambov State Technical University Sovetskaya str., 106, Tambov, Russian Federation, 392000

Postgraduate student

Department of Technics and technologies of nanomaterials production 

Nikolay Karpus, Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya str., 6, Moscow, Russian Federation, 117198

PhD, Professor

Department of national economy

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 4900 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Tyagi, V. V., Panwar, N. L., Rahim, N. A., Kothari, R. (2012). Review on solar air heating system with and without thermal energy storage system. Renewable and Sustainable Energy Reviews, 16 (4), 2289–2303. doi: 10.1016/j.rser.2011.12.005
  2. Nithyanandam, K., Pitchumani, R., Mathur, A. (2014). Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power. Applied Energy, 113, 1446–1460. doi: 10.1016/j.apenergy.2013.08.053
  3. Zeng, J. L., Cao, Z., Yang, D. W., Sun, L. X., Zhang, L. (2009). Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 101 (1), 385–389. doi: 10.1007/s10973-009-0472-y
  4. Tang, B., Qiu, M., Zhang, S. (2012). Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Solar Energy Materials and Solar Cells, 105, 242–248. doi: 10.1016/j.solmat.2012.06.012
  5. Zhao, C. Y., Lu, W., Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 84 (8), 1402–1412. doi: 10.1016/j.solener.2010.04.022
  6. Fan, L., Khodadadi, J. M. (2011). Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 15 (1), 24–46. doi: 10.1016/j.rser.2010.08.007
  7. Warzoha, R. J., Zhang, D., Feng, G., Fleischer, A. S. (2013). Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon, 61, 441–457. doi: 10.1016/j.carbon.2013.05.028
  8. Warzoha, R. J., Fleischer, A. S. (2015). Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials. Applied Energy, 154, 271–276. doi: 10.1016/j.apenergy.2015.04.121
  9. Li, M., Guo, Q., Nutt, S. (2017). Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Solar Energy, 146, 1–7. doi: 10.1016/j.solener.2017.02.003
  10. Zhang, N., Yuan, Y., Yuan, Y., Cao, X., Yang, X. (2014). Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage. Solar Energy, 110, 64–70. doi: 10.1016/j.solener.2014.09.003
  11. Renteria, J., Nika, D., Balandin, A. (2014). Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Applied Sciences, 4 (4), 525–547. doi: 10.3390/app4040525
  12. Kant, K., Shukla, A., Sharma, A., Henry Biwole, P. (2017). Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy, 146, 453–463. doi: 10.1016/j.solener.2017.03.013
  13. Liu, X., Rao, Z. (2017). Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochimica Acta, 647, 15–21. doi: 10.1016/j.tca.2016.11.010
  14. Kolupaev, I., Sobol, O., Murakhovski, A., Koltsova, T., Kozlova, M., Sobol, V. (2016). Use of computer processing by the method of multi-threshold cross sections for the analysis of optical images of fractal surface microstructure. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 29–35. doi: 10.15587/1729-4061.2016.81255
  15. Li, B., Liu, T., Hu, L., Wang, Y., Gao, L. (2013). Fabrication and Properties of Microencapsulated Paraffin@SiO2Phase Change Composite for Thermal Energy Storage. ACS Sustainable Chemistry & Engineering, 1 (3), 374–380. doi: 10.1021/sc300082m
  16. Sun, K., Stroscio, M. A., Dutta, M. (2009). Thermal conductivity of carbon nanotubes. Journal of Applied Physics, 105 (7), 074316. doi: 10.1063/1.3095759
  17. Huang, H., Liu, C. H., Wu, Y., Fan, S. (2005). Aligned Carbon Nanotube Composite Films for Thermal Management. Advanced Materials, 17 (13), 1652–1656. doi: 10.1002/adma.200500467
  18. Liu, C. H., Huang, H., Wu, Y., Fan, S. S. (2004). Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Applied Physics Letters, 84 (21), 4248–4250. doi: 10.1063/1.1756680
  19. Foygel, M., Morris, R. D., Anez, D., French, S., Sobolev, V. L. (2005). Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Physical Review B, 71 (10). doi: 10.1103/physrevb.71.104201
  20. Xu, X., Pereira, L. F. C., Wang, Y., Wu, J., Zhang, K., Zhao, X. et. al. (2014). Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 5. doi: 10.1038/ncomms4689
  21. Shchegolkov, A. V. (2017). Regenerative Heat Exchanger Based on Graphene-Modified Paraffin for Portable Respiratory Devices. Nano Hybrids and Composites, 13, 69–74. doi: 10.4028/www.scientific.net/nhc.13.69
  22. Bodin, N. B., Semenov, A. S., Shchegolkov, A. V., Shchegolkov, A. V., Popova, A. A. (2016). Nanomodified heat accumulating materials for energy saving in industrial processes. Ecology, Environment and Conservation, 22 (4), 2155–2162.

Downloads

Published

2017-06-19

How to Cite

Shchegolkov, A., Schegolkov, A., Karpus, N., Kovalenko, V., & Kotok, V. (2017). Investigation of charge and discharge regimes of nanomodified heat-accumulating materials. Eastern-European Journal of Enterprise Technologies, 3(12 (87), 23–29. https://doi.org/10.15587/1729-4061.2017.102888

Issue

Section

Materials Science