Formation of biofilms on dairy equipment and the influence of disinfectants on them

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110488

Keywords:

bacteria, biofilms, matrix, adhesion, dairy equipment, stainless steel, roughness, disinfectants

Abstract

Scientific studies show that microbial biofilms formed on the surfaces of dairy equipment negatively affect safety of the finished products and constitute a danger to the human health. This is due to the fact that the biofilms, in addition to the saprophytic microflora, may contain pathogenic micro-organisms as well. The present paper reports results of the studies into composition of the microflora of dairy equipment and finished products, the process of biofilm formation on stainless steel with different surface roughness, with the effect of disinfectants on the planktonic and biofilm forms of bacteria determined.

It was established that bacteria of the genera Bacillus, Lactobacillus and the Enterobacteriaceae family are most often isolated from dairy equipment and finished dairy products, with staphylococci, enterococci, streptococci, and pseudomonads isolated in a lesser degree. The isolated bacteria mainly form biofilms of high and medium density. It was found that the Escherichia coli biofilms of lower density form on the surface of stainless steel of brand AISI 321 with a surface roughness of 0.16 µm compared to the surface with a surface roughness of 0.63‒0.955 µm. This process takes place at a temperature of 17 °C, over 6‒24 hours, followed by the formation of a high-density biofilm regardless of the surface roughness. It was established that the disinfectant Argenvit proved to be inefficient for the biofilm and planktonic forms of bacteria. The disinfectants P3-ansep CIP, Eco chlor, Medicarine and Maxidez demonstrated bactericidal effect on the planktonic bacteria; they, however, did not act on the biofilm forms. The most effective disinfectant in terms of action on the bacteria in biofilms proved to be the disinfectant Р3-oxonia active-150 based on hydrogen peroxide and peracetic acid.

Thus, the data obtained indicate that in order to efficiently sanitize dairy equipment, it is required to use the disinfectants that affect bacteria in the biofilms. This in turn will ensure production of safe dairy products

Author Biographies

Mykola Kukhtyn, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Doctor of Veterinary Sciences, Professor

Department of Food Biotechnology and Chemistry

Oleksandra Berhilevych, Sumy State University Rymskogo-Korsakova str., 2, Sumy, Ukraine, 40007

Doctor of Veterinary Sciences, Professor

Department of Public Health 

Khrystyna Kravcheniuk, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Postgraduate student

Department of Food Biotechnology and Chemistry

Oksana Shynkaruk, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Postgraduate student

Department of Food Biotechnology and Chemistry

Yulia Horyuk, State Agrarian and Engineering University in Podilya Schevchenkо str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Senior Lecturer

Department of Infectious and Parasitic Diseases

Nazariy Semaniuk, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Senior Lecturer

Department of Microbiology and Virology

References

  1. Malek, F., Moussa-Boudjemâa, B., Khaouani-Yousfi, F., Kalai, A., Kihel, M. (2012). Microflora of biofilm on Algerian dairy processing lines: An approach to improve microbial quality of pasteurized milk. African Journal of Microbiology Research, 6 (17), 3836–3844. doi: 10.5897/ajmr11.1120
  2. Shi, X., Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20 (9), 407–413. doi: 10.1016/j.tifs.2009.01.054
  3. Sepulveda, D. R., Góngora-Nieto, M. M., Guerrero, J. A., Barbosa-Cánovas, G. V. (2009). Shelf life of whole milk processed by pulsed electric fields in combination with PEF-generated heat. LWT – Food Science and Technology, 42 (3), 735–739. doi: 10.1016/j.lwt.2008.10.005
  4. Aires, G. S. B., Walter, E. H. M., Junqueira, V. C. A., Roig, S. M., Faria, J. A. F. (2009). Bacillus cereus in Refrigerated Milk Submitted to Different Heat Treatments. Journal of Food Protection, 72 (6), 1301–1305. doi: 10.4315/0362-028x-72.6.1301
  5. Walkling-Ribeiro, M., Rodríguez-González, O., Jayaram, S., Griffiths, M. W. (2011). Microbial inactivation and shelf life comparison of “cold” hurdle processing with pulsed electric fields and microfiltration, and conventional thermal pasteurisation in skim milk. International Journal of Food Microbiology, 144 (3), 379–386. doi: 10.1016/j.ijfoodmicro.2010.10.023
  6. Petrus, R. R., Loiola, C. G., Oliveira, C. A. F. (2010). Microbiological Shelf Life of Pasteurized Milk in Bottle and Pouch. Journal of Food Science, 75 (1), M36–M40. doi: 10.1111/j.1750-3841.2009.01443.x
  7. Lequette, Y., Boels, G., Clarisse, M., Faille, C. (2010). Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling, 26 (4), 421–431. doi: 10.1080/08927011003699535
  8. Haeghebaert, S., Le Querrec, F., Vaillant, V. et. al. (2010). Food poisoning incidents in France in 1998. Bull Epidemiol Hebdomad, 65–70.
  9. Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., Herman, L. (2012). Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Comprehensive Reviews in Food Science and Food Safety, 11 (2), 133–147. doi: 10.1111/j.1541-4337.2011.00183.x
  10. Bremer, P., Seale, B., Flint, S., Palmer, J. (2009). Biofilms in dairy processing. Biofilms in the Food and Beverage Industries, 396–431. doi: 10.1201/9781439847480-c15
  11. Bremer, P. J., Fillery, S., McQuillan, A. J. (2006). Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. International Journal of Food Microbiology, 106 (3), 254–262. doi: 10.1016/j.ijfoodmicro.2005.07.004
  12. Seale, B., Bremer, P., Flint, S., Brooks, J., Palmer, J. (2015). Overview of the Problems Resulting from Biofilm Contamination in the Dairy Industry. Biofilms in the Dairy Industry, 49–64. doi: 10.1002/9781118876282.ch4
  13. Oliveira, N. M., Martinez-Garcia, E., Xavier, J., Durham, W. M., Kolter, R., Kim, W., Foster, K. R. (2015). Correction: Biofilm Formation As a Response to Ecological Competition. PLOS Biology, 13 (8), e1002232. doi: 10.1371/journal.pbio.1002232
  14. Monds, R. D., O’Toole, G. A. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology, 17 (2), 73–87. doi: 10.1016/j.tim.2008.11.001
  15. Römling, U., Kjelleberg, S., Normark, S., Nyman, L., Uhlin, B. E., Åkerlund, B. (2014). Microbial biofilm formation: a need to act. Journal of Internal Medicine, 276 (2), 98–110. doi: 10.1111/joim.12242
  16. Hall-Stoodley, L., Costerton, J. W., Stoodley, P. (2004). Bacterial biofilms: from the Natural environment to infectious diseases. Nature Reviews Microbiology, 2 (2), 95–108. doi: 10.1038/nrmicro821
  17. Finkel, J. S., Mitchell, A. P. (2010). Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology, 9 (2), 109–118. doi: 10.1038/nrmicro2475
  18. Zhao, K., Tseng, B. S., Beckerman, B., Jin, F., Gibiansky, M. L., Harrison, J. J. et. al. (2013). Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature, 497 (7449), 388–391. doi: 10.1038/nature12155
  19. Lopez, D., Vlamakis, H., Kolter, R. (2010). Biofilms. Cold Spring Harbor Perspectives in Biology, 2 (7), a000398–a000398. doi: 10.1101/cshperspect.a000398
  20. Ha, D.-G., O’Toole, G. A. (2015). c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review. Microbiology Spectrum, 3 (2). doi: 10.1128/microbiolspec.mb-0003-2014
  21. Langsrud, S., Moen, B., Møretrø, T., Løype, M., Heir, E. (2016). Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. Journal of Applied Microbiology, 120 (2), 366–378. doi: 0.1111/jam.13013
  22. Cherif-Antar, A., Moussa-Boudjemâa, B., Didouh, N., Medjahdi, K., Mayo, B., Flórez, A. B. (2015). Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. Dairy Science & Technology, 96 (1), 27–38. doi: 10.1007/s13594-015-0235-4
  23. García, S., Trueba, A., Vega, L. M., Madariaga, E. (2016). Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser. Biofouling, 32 (10), 1185–1193. doi: 10.1080/08927014.2016.1241875
  24. Cowle, M. W., Babatunde, A. O., Rauen, W. B., Bockelmann-Evans, B. N., Barton, A. F. (2014). Biofilm development in water distribution and drainage systems: dynamics and implications for hydraulic efficiency. Environmental Technology Reviews, 3 (1), 31–47. doi: 10.1080/09593330.2014.923517
  25. Ferreira, C., Pereira, A. M., Pereira, M. C., Simões, M., Melo, L. F. (2013). Biofilm Control With New Microparticles With Immobilized Biocide. Heat Transfer Engineering, 34 (8-9), 712–718. doi: 10.1080/01457632.2012.739040
  26. Hcevar, M., Jenko, M., Godec, M., Drobne, D. (2014). An overview of the influence of stainless-steel surface properties on bacterial adhesion. Materials and technology, 48 (5), 609–617.
  27. Krushelnytska, N. V. (2013). Influence of pH on the ability to form microbial biofilms by microorganisms isolated from milking equipment and raw milk. Scientific and Technical Bulletin of the Institute of Animal Biology and the State Scientific-Research Control Institute of Veterinary Preparations and Feed Additives, 14 (3-4), 82–86. Available at: http://nbuv.gov.ua/UJRN/Ntbibt_2013_14_3-4_17
  28. Frasseto, F., Parisotto, T. M., Peres, R. C. R., Marques, M. R., Line, S. R. P., Nobre dos Santos, M. (2012). Relationship among Salivary Carbonic Anhydrase VI Activity and Flow Rate, Biofilm pH and Caries in Primary Dentition. Caries Research, 46 (3), 194–200. doi: 10.1159/000337275
  29. Chandy, J. P., Angles, M. L. (2001). Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. Water Research, 35 (11), 2677–2682. doi: 10.1016/s0043-1354(00)00572-8
  30. Sheng, X., Ting, Y. P., Pehkonen, S. O. (2008). The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. Journal of Colloid and Interface Science, 321 (2), 256–264. doi: 10.1016/j.jcis.2008.02.038
  31. Kolter, R., Greenberg, E. P. (2006). Microbial sciences: The superficial life of microbes. Nature, 441 (7091), 300–302. doi: 10.1038/441300a
  32. Volkova, H., Babak, V. (2008). Biofilms and hygiene on dairy farms and in the dairy industry: sanitation chemical products and their effectiveness on biofilms – a review. Czech S. Food Sci., 26 (5), 309–323.
  33. Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L., Costerton, J. W. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 33 (26), 5967–5982. doi: 10.1016/j.biomaterials.2012.05.031
  34. Gunduz, G. T., Tuncel, G. (2006). Biofilm formation in an ice cream plant. Antonie van Leeuwenhoek, 89 (3-4), 329–336. doi: 10.1007/s10482-005-9035-9
  35. Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., Chihib, N.-E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology, 196 (7), 453–472. doi: 10.1007/s00203-014-0983-1
  36. Puga, C. H., Orgaz, B., SanJose, C. (2016). Listeria monocytogenes Impact on Mature or Old Pseudomonas fluorescens Biofilms During Growth at 4 and 20°C. Frontiers in Microbiology, 7. doi: 10.3389/fmicb.2016.00134
  37. Munsch-Alatossava, P., Alatossava, T. (2006). Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiological Research, 161 (4), 334–346. doi: 10.1016/j.micres.2005.12.004
  38. Shaheen, R., Svensson, B., Andersson, M. A., Christiansson, A., Salkinoja-Salonen, M. (2010). Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiology, 27 (3), 347–355. doi: 10.1016/j.fm.2009.11.004
  39. Ranieri, M. L., Huck, J. R., Sonnen, M., Barbano, D. M., Boor, K. J. (2009). High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk. Journal of Dairy Science, 92 (10), 4823–4832. doi: 10.3168/jds.2009-2144
  40. Cloete, T. E. (2003). Resistance mechanisms of bacteria to antimicrobial compounds. International Biodeterioration & Biodegradation, 51 (4), 277–282. doi: 10.1016/s0964-8305(03)00042-8
  41. Davin-Regli, A., Pages, J. M. (2012). Cross-resistance between biocides and antimicrobials: an emerging question. Revue Scientifique et Technique de l’OIE, 31 (1), 89–104. doi: 10.20506/rst.31.1.2099
  42. Simões, M., Simões, L. C., Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT – Food Science and Technology, 43 (4), 573–583. doi: 10.1016/j.lwt.2009.12.008
  43. Kukhtyn, M., Berhilevych, O., Kravcheniuk, K., Shynkaruk, O., Horyuk, Y., Semaniuk, N. (2017). The influence of disinfectants on microbial biofilms of dairy equipment. EUREKA: Life Sciences, 5, 11–17. doi: 10.21303/2504-5695.2017.00423
  44. Hoolta, J., Kriga, N., Snita, P. et. al. (Eds.) (1997). Determinant of Bergy bacteria. Vol. 2. Мoscow: Mir, 799.
  45. Stepanović, S., Vuković, D., Dakić, I., Savić, B., Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40 (2), 175–179. doi: 10.1016/s0167-7012(00)00122-6
  46. Hygienic equipment design criteria (2004). Brussels: EHEDG, No. 8.

Downloads

Published

2017-10-19

How to Cite

Kukhtyn, M., Berhilevych, O., Kravcheniuk, K., Shynkaruk, O., Horyuk, Y., & Semaniuk, N. (2017). Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 5(11 (89), 26–33. https://doi.org/10.15587/1729-4061.2017.110488

Issue

Section

Technology and Equipment of Food Production