The analysis of friction effect on equal channel angular pressing (ECAP) process on Aluminium 5052 to homogeneity of strain distribution

Authors

  • Aminnudin Aminnudin University Negeri Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0002-3883-0136
  • Pratikto Pratikto University of Brawijaya Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia
  • Anindito Purnowidodo University of Brawijaya Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia
  • Yudy Surya Irawan University of Brawijaya Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia

DOI:

https://doi.org/10.15587/1729-4061.2018.127006

Keywords:

die, aluminum, ECAP, friction, homogeneity, simulation, strain

Abstract

In the current study, the effect of friction coefficient on strain distribution and deformation was investigated with the computer simulation providing a better understanding of the material flow mechanism and deformation behavior in the ECAP. The 10×10 mm and 50 mm-long rectangular billet was used as the geometry of aluminum material. The geometry of dies is 105° channel angle, 0 mm inner fillet radius, and 5 mm outer fillet radius. The dies were modeled as rigid bodies, and the specimen was assumed as a bilinear hardening model. The effect of friction was investigated with the three-level variation coefficient of friction (0.01; 0.025 and 0.05). Based on the result, it can be shown that the friction affects the strain distribution condition. The friction of 0.05 produced more uniform strain distribution, better homogeneity, and smaller corner gap. The experimental study of modeling results was done with MoS2 lubricant while the strain distribution was verified by the microhardness test. The microhardness distribution test result was similar to strain distribution from modeling.

Author Biographies

Aminnudin Aminnudin, University Negeri Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctoral Student

Department of Mechanical Engineering

Pratikto Pratikto, University of Brawijaya Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctorate, Professor

Department of Mechanical Engineering

Anindito Purnowidodo, University of Brawijaya Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctorate

Department of Mechanical Engineering

Yudy Surya Irawan, University of Brawijaya Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctorate

Department of Mechanical Engineering

References

  1. Valiev, R. Z., Langdon, T. G. (2006). Developments in the use of ECAP processing for grain refinement. Reviews of Advanced Materials Science, 13 (1), 15–26.
  2. Valiev, R. Z., Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51 (7), 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  3. Luis Pérez, C. J., Luri, R. (2008). Study of the ECAE process by the upper bound method considering the correct die design. Mechanics of Materials, 40 (8), 617–628. doi: 10.1016/j.mechmat.2008.02.003
  4. Valiev, R. (2004). Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, 3 (8), 511–516. doi: 10.1038/nmat1180
  5. Balasundar, I., Raghu, T. (2010). Effect of friction model in numerical analysis of equal channel angular pressing process. Materials & Design, 31 (1), 449–457. doi: 10.1016/j.matdes.2009.05.029
  6. Aminnudin, Pratiko, Purnowidodo A., Irawan Y. S., Haruyama S., Kaminishi K. (2013). Evaluation Grain Homogeneity of Aluminium after ECAP Process by ECAP Geometry Analysis Using Taguchi Method. Key Engineering Materials, 594-595, 896–901. doi: 10.4028/www.scientific.net/kem.594-595.896
  7. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Tsenev, N. K., Valiev, R. Z., Langdon, T. G. (1997). Structural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size. Acta Materialia, 45 (11), 4751–4757. doi: 10.1016/s1359-6454(97)00120-1
  8. Chrominski, W., Olejnik, L., Rosochowski, A., Lewandowska, M. (2015). Grain refinement in technically pure aluminium plates using incremental ECAP processing. Materials Science and Engineering: A, 636, 172–180. doi: 10.1016/j.msea.2015.03.098
  9. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., Langdon, T. G. (1996). Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, 35 (2), 143–146. doi: 10.1016/1359-6462(96)00107-8
  10. Patil Basavaraj, V., Chakkingal, U., Prasanna Kumar, T. S. (2009). Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. Journal of Materials Processing Technology, 209 (1), 89–95. doi: 10.1016/j.jmatprotec.2008.01.031
  11. Kubota, M., Wu, X., Xu, W., Xia, K. (2010). Mechanical properties of bulk aluminium consolidated from mechanically milled particles by back pressure equal channel angular pressing. Materials Science and Engineering: A, 527 (24-25), 6533–6536. doi: 10.1016/j.msea.2010.06.088
  12. Cabibbo, M. (2010). A TEM Kikuchi pattern study of ECAP AA1200 via routes A, C, BC. Materials Characterization, 61 (6), 613–625. doi: 10.1016/j.matchar.2010.03.007
  13. Luri, R., Luis Pérez, C. J., Salcedo, D., Puertas, I., León, J., Pérez, I., Fuertes, J. P. (2011). Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries. Journal of Materials Processing Technology, 211 (1), 48–56. doi: 10.1016/j.jmatprotec.2010.08.032
  14. Djavanroodi, F., Ebrahimi, M. (2010). Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Materials Science and Engineering: A, 527 4-5), 1230–1235. doi: 10.1016/j.msea.2009.09.052
  15. Mahallawy, N. E., Shehata, F. A., Hameed, M. A. E., Aal, M. I. A. E., Kim, H. S. (2010). 3D FEM simulations for the homogeneity of plastic deformation in Al–Cu alloys during ECAP. Materials Science and Engineering: A, 527 (6), 1404–1410. doi: 10.1016/j.msea.2009.10.032
  16. Suo, T., Li, Y., Guo, Y., Liu, Y. (2006). The simulation of deformation distribution during ECAP using 3D finite element method. Materials Science and Engineering: A, 432 (1-2), 269–274. doi: 10.1016/j.msea.2006.06.035
  17. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., Langdon, T. G. (1996). Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, 35 (2), 143–146. doi: 10.1016/1359-6462(96)00107-8
  18. Hatch, J. E. (Ed.) (1984). Aluminium: Properties and Physical Metallurgy. Ohio: American Society for Metals, 424.

Downloads

Published

2018-03-27

How to Cite

Aminnudin, A., Pratikto, P., Purnowidodo, A., & Irawan, Y. S. (2018). The analysis of friction effect on equal channel angular pressing (ECAP) process on Aluminium 5052 to homogeneity of strain distribution. Eastern-European Journal of Enterprise Technologies, 2(1 (92), 57–62. https://doi.org/10.15587/1729-4061.2018.127006

Issue

Section

Engineering technological systems