Development of procedure for assessing the degree of enviromental hazard from the sources of aquatic environment pollution

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.143804

Keywords:

environmental safety, pollution source, harmful influence, load on aquatic site

Abstract

The new procedure for evaluation of the degree of environmental safety of water sites based on the comparison of the influence of separate point sources of sewage discharge was developed. The use of this procedure will make it possible to solve the problem of identifying ecologically dangerous sites and to determine priority directions of aquatic sites protection in the region. The essence of this procedure is to assess the environmental hazard of specific facilities of the national economy taking into account the safety level, the degree of influence on the water quality of an aquatic site, effectiveness of monitoring and the magnitude of anthropogenic load.

The logical-mathematical model of evaluating the impact of sources of water environment pollution, based on determining the coefficients of conditions of sewage discharge, sewage pollution and the load on an aquatic site, was proposed. The degree of environmental hazard of the sources of pollution of aquatic sites was determined by the value of coefficient of harmful influence of a pollution source on aquatic sites by the five-level scale from "safe" to "extremely hazardous". The designed scale corresponds to the environmental classification of the Water Framework Directive of the EU 2000/60/EU.

Testing of the developed procedure was performed on an example of the section of a river basin that is typical for territorial production complexes, where the facilities of nuclear power industry, industrial manufacturing and public utilities are located. Based on determining block and total coefficient of harmful influence of the sources of pollution of aquatic sites, we developed the map of ecological hazard of the sources of the river basin pollution. The sources of pollution of aquatic sites were classified by the designed scale. It was established that large enterprises of housing and communal services and the facilities of machine-building industry have the greatest degree of environmental hazard. These facilities belong to class II and are described as "hazardous’. Enterprises of atomic power and hydropower plants belong to class III of hazard − "moderately hazardous".

Results of the analysis can be used to develop water resources management strategies and measures to reduce the impact of pollution sources on aquatic sites

Author Biographies

Nataliya Magas, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy avе., 9, Mykolaiv, Ukraine, 54025

Senior Lecturer

Department of Ecology and Environmental Technologies

Ganna Trokhymenko, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy avе., 9, Mykolaiv, Ukraine, 54025

PhD, Associate Professor

Department of Ecology and Environmental Technologies

Volodymyr Blahodatnyi, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy avе., 9, Mykolaiv, Ukraine, 54025

PhD, Associate Professor

Department of Ecology and Environmental Technologies

References

  1. Magas, N., Gomelya, M. (2018). Assessment of the current state of water quality in the tributaries of the Southern Bug river. Scientific Letters of Academic Society of Michal Baludansky, 6 (2A), 122–129.
  2. Mahas, N. I., Trokhymenko, H. H. (2013). Otsinka suchasnoho antropohennoho navantazhennia na basein richky Pivdennyi Buh. Ekolohichna bezpeka, 2, 48–52.
  3. Klymenko, M. O., Hrokhovska, Yu. R. (2005). Otsinka ekolohichnoho stanu vodnykh ekosystem richok baseinu Prypiati za vyshchymy vodnymy roslynamy. Rivne, 194.
  4. Udod, V. M., Trofimovych, V. V., Yatsiv, M. Yu. (2010). Ekolohichni kryteriyi otsinky yakosti vody hidroekosystem na prykladi vodozbirnoho baseinu r. Prut. Ekolohichna bezpeka ta pryrodokorystuvannia, 1, 84–93.
  5. Klimenko, N. A., Liho, E. A. (2003). Ekologicheskoe sostoyanie rek Poles'ya Ukrainy. Aktual'nye ekologicheskie problemy Respubliki Tatarstan, 153–154.
  6. Likho, O. A., Bondarchuk, I. A. (2010). Udoskonalennia metodyky otsinky ekolohichnoho stanu baseiniv malykh richok. Zbirnyk materialiv II Vseukrainskoho zizdu ekolohiv z mizhnarodnoiu uchastiu. Vinnytsia. Available at: http://eco.com.ua/sites/eco.com.ua/files/lib1/konf/2vze/zb_m/0035_zb_m_2VZE.pdf
  7. Rybalova, O., Artemiev, S. (2017). Development of a procedure for assessing the environmental risk of the surface water status deterioration. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 67–76. doi: https://doi.org/10.15587/1729-4061.2017.112211
  8. Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа, A., Shestopalov, O., Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 4–17. doi: https://doi.org/10.15587/1729-4061.2018.127829
  9. Vasenko, A., Rybalova, O., Kozlovskaya, O. (2016). A study of significant factors affecting the quality of water in the Oskil river (Ukraine). Eastern-European Journal of Enterprise Technologies, 3 (10 (81)), 48–55. doi: https://doi.org/10.15587/1729-4061.2016.72415
  10. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (2000). Official Journal of the European Communities. L. 327, 72.
  11. Water Resource Management in Germany. Part 1. Fundamentals (2014). Berlin, 150. Available at: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/wawi_teil_01_englisch_barrierefrei.pdf
  12. Water Resource Management in Germany. Part 2. Water Quality (2014). Berlin, 114. Available at: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/wawi_teil_02_englisch_barrierefrei.pdf
  13. Arle, J., Mohaupt, V., Kirst, I. (2016). Monitoring of Surface Waters in Germany under the Water Framework Directive – A Review of Approaches, Methods and Results. Water, 8 (6), 217. doi: https://doi.org/10.3390/w8060217
  14. Wang, X., Wen, J., Chen, P., Liu, N. (2018). Monitoring and Assessment of Youshui River Water Quality in Youyang. IOP Conference Series: Earth and Environmental Science, 113, 012069. doi: https://doi.org/10.1088/1755-1315/113/1/012069
  15. Wu, Z., Zhang, D., Cai, Y., Wang, X., Zhang, L., Chen, Y. (2017). Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-18285-y
  16. Szczerbiñska, N., Gałczyñska, M. (2015). Biological methods used to assess surface water quality. Archives of Polish Fisheries, 23 (4), 185–196. doi: https://doi.org/10.1515/aopf-2015-0021
  17. Petry, C. T., Costa, G. M. da, Benvenuti, T., Rodrigues, M. A. S., Droste, A. (2016). Integrated assessment of chemical quality and genotoxicity of the water of the Luiz Rau Stream in the lower stretch of the Sinos River Basin, in South Brazil. Ambiente e Agua – An Interdisciplinary Journal of Applied Science, 11 (4), 878–890. doi: https://doi.org/10.4136/ambi-agua.1779
  18. Florencio Ballesteros, M. A. P. (2015). A New Approach to Evaluate the Ecological Status of a River by Visual Assessment. Journal of Waste Water Treatment & Analysis, 06 (01). doi: https://doi.org/10.4172/2157-7587.1000185
  19. Von der Ohe, P. C., Dulio, V., Slobodnik, J., De Deckere, E., Kühne, R., Ebert, R.-U. et. al. (2011). A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Science of The Total Environment, 409 (11), 2064–2077. doi: https://doi.org/10.1016/j.scitotenv.2011.01.054
  20. Slobodnik, J., Mrafkova, L., Carere, M., Ferrara, F., Pennelli, B., Schüürmann, G., von der Ohe, P. C. (2012). Identification of river basin specific pollutants and derivation of environmental quality standards: A case study in the Slovak Republic. TrAC Trends in Analytical Chemistry, 41, 133–145. doi: https://doi.org/10.1016/j.trac.2012.08.008
  21. Daginnus, K., Gottardo, S., Payá-Pérez, A., Whitehouse, P., Wilkinson, H., Zaldívar, J.-M. (2011). A Model-Based Prioritisation Exercise for the European Water Framework Directive. International Journal of Environmental Research and Public Health, 8 (2), 435–455. doi: https://doi.org/10.3390/ijerph8020435
  22. Snizhko, S. I. (2001). Otsinka ta prohnozuvannia yakosti pryrodnykh vod. Kyiv: Nika-Tsentr, 264.
  23. Ekolohichna otsinka yakosti poverkhnevykh vod sushi ta estuariyv Ukrainy (1994). KND 211.1.4.010-94. Kyiv, 37.
  24. Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy (2012). Kharkiv, 37.
  25. Metodyka rozrakhunku antropohennoho navantazhennia i klasyfikatsiyi ekolohichnoho stanu baseiniv malykh richok Ukrainy (2007). Kyiv: Polimed, 71.

Downloads

Published

2018-10-30

How to Cite

Magas, N., Trokhymenko, G., & Blahodatnyi, V. (2018). Development of procedure for assessing the degree of enviromental hazard from the sources of aquatic environment pollution. Eastern-European Journal of Enterprise Technologies, 5(10 (95), 56–65. https://doi.org/10.15587/1729-4061.2018.143804