The model of positioning homogeneous wireless sensor network elements

Authors

  • Виктория Александровна Власова Kharkov National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16392

Keywords:

model, initialization, mote, homogeneous, positioning, energy efficiency

Abstract

Simulation modeling is one of the basic methods of validating research. The paper presents a model of positioning elements during initialization of a homogeneous wireless sensor network (WSN) with a combined experimental and analytical cycle. Since simulation models suppose abstraction and accounting for key parameters that influence the phenomenon being investigated, a set of constraints was adopted. They allowed identifying WSN elements and their parameters, which are directly involved in determining the location of sensor network nodes. Thus, the combination of these subsystems and their interaction algorithm made it possible to implement the required simulation model. Its accuracy is confirmed by computer modeling results. The model was developed from the point of view of the characteristics and features of homogeneous field WSN and available equipment, allowing to define a wide range of applications. The simulation results confirm the hypothesis of significant improvement in the accuracy of determining the coordinates and increasing energy efficiency when using the method with a combined experimental and analytical cycle during network initialization.

Author Biography

Виктория Александровна Власова, Kharkov National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Graduate student

Department "Communication Networks"

References

  1. Гавриленко, В.Г. Детальное моделирование физического уровня в симуляторе беспроводных сенсорных сетей [Текст]/ В.Г. Гавриленко, А.Ю. Ельцов, А.А. Кирюшин, С.В. Лобанов, А.Н. Садков// Радиотехника и электроника. – 2009. – Т. 54. − №4. – С. 465-475.
  2. Park, S. SensorSim: A Simulation Framework for Networks [Text]/ S. Park, A. Savvides, M. B. Srivastava// MSWIM '00 Proceedings of the 3rd ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems. – 2000. – P. 104-111.
  3. Marmol, F.G. TRMSim-WSN, Trust and Reputation Models Simulator for Wireless Sensor Networks [Text]/ F.G. Marmol, G.M. Perez// IEEE International Conference on Communications (IEEE ICC 2009), Communication and Information Systems Security Symposium. – 2009. – P. 1-5.
  4. Naguib, A. Wireless Sensor Network Localization Simulator v1.1 [Electronic resource]/ A. Naguib. – 2011. Режим доступа: http://www.codeproject.com/ Articles/225536/Wireless-Sensor-Network-Localization-Simulator-v1.
  5. Спосіб позиціювання вузлів у польових ZigBee мережах [Текст]: пат. №70948 України: МКП H 04 W 64/00 Власова В.О. Зеленін А.М.; заявник та власник Харківський національний університет радіоелектроніки. – u 2011 15709; заявл. 30.12.2011; опубл. 25.06.2012, Бюл. №12. – 7 с.: іл..
  6. XBee-PRO XSC RF Module [Text]: Product Manual. − Digi International Inc., 2008. – 45 p.
  7. XBee/XBee-PRO RF Modules [Text]: Product Manual v1.xEx - 802.15.4 Protocol. − Digi International Inc., 2009. – 69 p.
  8. Recommendation ITU-R P.1411-6 (02/2012): Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. P Series: Radiowave propagation. [Text]/ International Telecomunication Union. – ITU-R: Radiocommunication Sector. – 2012. – 35 p.
  9. Поваляев, Е. Системы спутниковой навигации ГЛОНАСС и GPS. Часть 3. Борьба с многолучевостью [Текст]/ Е. Поваляев, С. Хуторной// Инженерная микроэлектроника. – 2002. − №2(65). – С. 23-30.
  10. Ке, Я. Многолучевая доплеровская модель [Текст]/ Я. Ке// Системи управління, навігації та зв'язку. − 2009. − №3. − С. 219-221.
  11. Аникин, А.А. Разработка и моделирование систем комплексирования разнородных наблюдений [Текст]: дис. на соискание ученой степени кандидата технических наук: 05.13.18/ А.А. Аникин; [Ульяновский государственный технический университет]. – Ульяновск, 2006. –140 с.
  12. IEEE Std. 802.15.4-2003. IEEE Standard for Information technology, Telecommunications and information exchange between systems, Local and metropolitan area networks. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) [Текст]/ IEEE Computer Society. – NY, USA: The Institute of Electrical and Electronics Engineers, Inc, 2003. – 670 p.
  13. Зеленин, А.Н. Фаза инициализации в беспроводных сенсорных сетях [Текст]/ А.Н. Зеленин, В.А. Власова// Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Тематичний випуск: Нові рішення в сучасних технологіях. – 2012. – №26 – С. 55-61.
  14. Qi, Y. On relation among time delay and signal strength based geolocation methods [Text]/ Y. Qi, H. Kobayashi// Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE. – Dec. 2003. – Vol. 7. – P. 4079-4083.
  15. Gavrilenko, V.G., Eltsov, A.Yu., Kiryushin, A.A., Lobanov, S.V., Sadkov, A.N. (2009). Detailed modeling of the physical layer in the simulator wireless sensor networks.Vol. 54, 4, 465-475.
  16. Park, S., Savvides A., Srivastava, M. B. (2000). SensorSim: A Simulation Framework for Networks. MSWIM '00 Proceedings of the 3rd ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems,104-111.
  17. Marmol, F.G., Perez, G.M., Marmol, F.G. (2009). TRMSim-WSN, Trust and Reputation Models Simulator for Wireless Sensor Networks. IEEE International Conference on Communications (IEEE ICC 2009), Communication and Information Systems Security Symposium, 1-5.
  18. Naguib, A. Wireless Sensor Network Localization Simulator v1.1 (2011). Retrieved from http://www.codeproject.com/ Articles/225536/Wireless-Sensor-Network-Localization-Simulator-v1.
  19. Vlasova, V.A., Zelenin, A.N. (2012). A method of localization nodes in the field ZigBee networks. Patent of Ukraine №70948: МКП H 04 W 64/00. Published 25.06.2012, bulletin №12, 7.
  20. XBee-PRO XSC RF Module: Product Manual. (2008). Digi International Inc., 45.
  21. XBee/XBee-PRO RF Modules: Product Manual v1.xEx - 802.15.4 Protocol. (2009). Digi International Inc., 69.
  22. Recommendation ITU-R P.1411-6 (02/2012): Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. P Series: Radiowave propagation. International Telecomunication Union, 35.
  23. Povalyaev, E., Hutornoy, S. (2002). Satellite navigation systems GLONASS and GPS. Part 3. The fight against multibeam. Microelectronics Engineering, 2(65), 23-30.
  24. Ke, Ya. (2009). Multibeam Doppler model. Management systems, navigation and communication, 3, 219-221.
  25. Anikin, A.A. (2006). Development and modeling of complexation systems heterogeneous observations. Ulyanovsk State Technical University, 140. Russia, Ulyanovsk.
  26. IEEE Std. 802.15.4-2003. (2003). IEEE Standard for Information technology, Telecommunications and information exchange between systems, Local and metropolitan area networks. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer Society, 670. NY, USA: The Institute of Electrical and Electronics Engineers, Inc.
  27. Zelenin, A.N., Vlasova, V.A. (2012). The initialization phase in wireless sensor networks. Proceedings of the National Technical University "KhPI", 26, 55-61.
  28. Qi, Y., Kobayashi, H. (2003). On relation among time delay and signal strength based geolocation methods . Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE, 7, 4079-4083.

Published

2013-08-15

How to Cite

Власова, В. А. (2013). The model of positioning homogeneous wireless sensor network elements. Eastern-European Journal of Enterprise Technologies, 4(9(64), 44–48. https://doi.org/10.15587/1729-4061.2013.16392

Issue

Section

Information and controlling system