Monte-Carlo method application in simulations of electron processes at impacts of atoms with the surface

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.23326

Keywords:

Monte Carlo method, mathematical simulation, algorithm, accommodation, surface, ZnS, UV radiation, hydrogen, chemical reaction

Abstract

High-efficient energy accommodation of heterogeneous chemical reaction of hydrogen atom recombination by electron subsystem ZnS, ZnS, CdS-Ag, exposed to ionizing radiation is investigated. It is shown that the effect of ionizing radiation on ZnS, ZnS, CdS-Ag increases the reaction heat accommodation rate on the electronic channel by several orders. A model of the mechanism of the hetero­geneous recombination of atoms on ZnS, ZnS, CdS-Ag, with the participation of metastable electronic states, generated by ionizing radiation is developed. Numerical and mathematical simulation of the surface processes using theMonte Carlomethod is performed. It is found that the electron channel of accommodation may be the main channel for the H atoms recombination energy accommodation on the considered samples if they are exposed to ionizing radiation. The regions of activation and relaxation catalysis of the H atoms recombination reaction on the ZnS, ZnS, CdS-Ag are defined. The considered problem of exothermic reaction energy accommodation is of a general nature and carries information about the surface and physicochemical processes on it that is important for the physics and technology of semiconductors, catalysis and plasma chemistry.

Author Biographies

Михаил Викторович Гранкин, Priasovky State Technical University Universitetska st. 7, Mariupol, Ukraine, 87500

Graduate student

Computer Science Department

Анатолий Алексеевич Каргин, Donetsk National University 24 Universitetskaya st., Donetsk, 83001, Ukraine

Doctor of Science, professor

Department of Computer Technologies

References

  1. Zhdanov, V. P. Elementary Physicochemical Processes on Solid Surfaces [Text] / V. P. Zhdanov. – New-York: Springer-Verlag, 2007. – 314 p.
  2. Гранкин, В. П. Автоколебательная реакция гетерогенной рекомбинации атомов водорода и неравновесная десорбция молекул с поверхности (тефлона) [Текст] / В. П. Гранкин, В. В. Стыров, Ю. И. Тюрин // Журнал экспериментальной и теоретической физики. – 2002. – Т. 121, № 2. – С. 274–285.
  3. Стыров, В. В. Неравновесные хемоэффекты на поверхности твердых тел [Текст] / В. В. Стыров, Ю. И. Тюрин. - М.: Энергоатомиздат, 2003. – 507 с.
  4. Стыров, В. В. Гетерогенная хемилюминесценция на границе газ – твердое тело [Текст] / В. В. Стыров // Изв. АН СССР. Сер. Физ. – 1987. – Т. 51, № 3. – С. 524–530.
  5. Koshushner, M. A. Heterogeneous relaxation of molecule vibrational energy on metals [Text] / M. A. Koshushner, V. G. Kustarev, B. R. Shub // Surface Science. – 1979. – Т. 81, №2. – С. 261-272.
  6. Karpov, E. G. Nonadiabatic chemical-to-electrical energy conversion in heterojunction nanostructures [Text] / E. G. Karpov // Physical Review B. – 2010. – Т. 81. – С. 205443-205447.
  7. Гранкин, В. П. Катализ гетерогенной рекомбинации атомов водорода электронной подсистемой широкозонных твердых тел [Текст] / В. П. Гранкин // Кинетика и катализ. – 1996. – Т. 37, № 6. – С. 863-868.
  8. Слинько, М. Г. Автоколебания скорости гетерогенных каталитических реакций [Текст] / М. Г. Слинько, М. М. Слинько // Успехи химии. – 1980. – Т. 49, № 4. – С. 561-581.
  9. Newman, M. E. J. Monte Carlo Methods in Statistical Physics [Text] / M. E. J. Newman, G. T. Barkema. – Oxford: Oxford Univ. Press, 1999 – 496 с.
  10. Grankin, V. P. High-efficiency electronic accommodation of energy of heterogeneous recombination of hydrogen atoms on the surface of the monocrystal ZnS [Text] / V. P. Grankin, V. Yu. Shalamov, N. K. Uzunoglu // Chem. Phys. Lett. – 2000. – Т. 328, № 10. – С. 10-16.
  11. Семенов, Н. Н. Влияние поверхности на гомогенные цепные реакции и возможность гетерогенных цепных процессов [Текст] / Семенов Н. Н., Воеводский В. В. / Гетерогенный катализ в химической промышленности: материалы всесоюз. совещ. 1953 г. // отв. ред. Г.К.Боресков. - 1955. - С. 233-255.
  12. Zhdanov, V. P. (2007). Elementary Physicochemical Processes on Solid Surfaces. New-York: Springer-Verlag, 314.
  13. Grankin, V. P., Styrov, V. V., Tyurin, Yu. I. (2002). Self-Oscillatory Heterogeneous Recombination of Hydrogen Atoms and Nonequi¬librium Desorption of Molecules from the Surface (Teflon). J of Expermental and Theoretical Physics, 94 (2), 228–238.
  14. Styrov, V. V., Tyurin, Yu. I. (2003). Non-equilibrium chemoeffects on the surface of solids. Moscow, Russia: Energoatomizdat, 507.
  15. Styrov, V. V. (1987). Heterogeneous Chemiluminescnence on the Boarder of Gas and Solid. Izv. AN USSR, Phys. Ser., 51 (11), 524– 530.
  16. Koshushner, M. A., Kustarev, V. G., Shub, B. R. (1979). Heterogeneous relaxation of molecule vibrational energy on metals. Surf Sci, 81(2), 261–272.
  17. Karpov, E. G. (2010). Nonadiabatic chemical-to-electrical energy conversion in heterojunction nanostructures. Physical Review B. 81, 205443-205447.
  18. Grankin, V. P. (1996). Catalysis of heterogeneous recombination of hydrogen atoms by electron subsistem of wide-gap solids. Kinetics and Catalysis, 37(6), 802-807.
  19. Slinko, M. G, Slinko, M. M. (1980). Self-excited oscillations of reaction rates of heterogeneous catalytic reactions. Chem Succ, 49(4), 561–581.
  20. Newman, M. E. J. (1999). Monte Carlo Methods in Statistical Physics. Oxford: Oxford Univ. Press, 496.
  21. Grankin, V. P. (2000). High-efficiency electronic accommodation of energy of heterogeneous recombination of hydrogen atoms on the surface of the monocrystal ZnS. Chem. Phys. Lett. 328(10), 10-16.
  22. Semyonov, N. N., Voevodskiy, V. V. (1955). Heterogeneous catalysis in chemical industry, Moscow, USSR: Goshimizdat, 233.

Published

2014-04-11

How to Cite

Гранкин, М. В., & Каргин, А. А. (2014). Monte-Carlo method application in simulations of electron processes at impacts of atoms with the surface. Eastern-European Journal of Enterprise Technologies, 2(6(68), 32–37. https://doi.org/10.15587/1729-4061.2014.23326

Issue

Section

Technology organic and inorganic substances