Regulation of the structure formation of ceramic masses of the system multimineral clay– kaolin-feldspar raw materials

Authors

  • Тетяна Валеріївна Оксамит PAO «Maydan-Vil'skiy kombiat refractoriess» Street Nekrasova 50/1, village in Mikhaylyuchka, district of Shepetovka Khmel'nickaya area, Ukraine, 30416, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.28011

Keywords:

structure formation, chemical-mineralogical composition, mathematical model, fusible clay, substandard kaolin, pegmatite, sintering interval, ceramic clinker, composition, properties

Abstract

Polymineral clay raw materials with absent sintering interval was selected as the main raw material for the synthesis of ceramic masses, production of ceramic clinker for various purposes using the plastic extrusion method.

Kaolin and pegmatite from the Khmelivskyi deposit that may act as fluxing agents were selected as kaolinite-feldspar raw materials.

Methods of directed structure formation regulation of ceramic masses based on polymineral clay raw materials using kaolinite-natural feldspar raw materials were investigated.

Using mathematical planning, mathematical models of interaction and influence of various technological factors on the properties of experimental masses were developed. Using the correlation analysis method, the relationships in the system polymineral clay-kaolinite-natural feldspar raw materials were examined.

Based on the ceramic mass 9 and 11 of the system polymineral clay-montmorillonite-substandard kaolin-pegmatite of the Khmelivskyi deposit, possibility to produce ceramic clinker by optimizing the chemical-mineralogical composition, and masses with a wide sintering interval was shown.

Author Biography

Тетяна Валеріївна Оксамит, PAO «Maydan-Vil'skiy kombiat refractoriess» Street Nekrasova 50/1, village in Mikhaylyuchka, district of Shepetovka Khmel'nickaya area, Ukraine, 30416

Main technologist

References

  1. 1. Butt, Y. M., Dudarev, G. N., Matveeva, M. A. (1962). General technology of silicates. Gostroyizdat, 457.

    2. Budnikov, P. P., Gentle, A. S., Bulavin,I.A. (1950). Technology keramіki and refractories. State. Ed. Lita. by stroit.mater, 575.

    3 Frost,I.I.(1961). The technology of building ceramics. GostroyizdatUSSR, 464.

    4 Avgustinik, A. I. (1975). Ceramics. Stroyizdat, 560.

    5. Sokolov, Y. A (1973) Clinker and its production. Publ gueosdor.

    6 Dudarev,I.G, Matveev, G. M., Sukhanov, V. B. (1987). General technology sylikatov. Stroyizdat, 560.

    7 Hodakovska, T. V., Ogorodnіk, І. V., Dimitrenko, N. D. (2006). Keramіchny klіnker for oblichkuvannya fasadіv i brukuvannya dorіg s vikoristannyam polovoshpatvmіsnoї sirovini. Construction materials and sanitary equipment, 22, 60–67.

    8 Yakіmchuk, T. V., Ogorodnіk,I.V., Donіy, O. M., Dimitrenko, N. D. (2008). Mathematical, modelyuvannya skladіv weight for virobnitstva keramіchnoї klіnkernoї tsegla on osnovі clay Kiїvskoї of Region. Budіvelnі that merіali that virobi, 1, 23–27.

    9 Pavlov, V. F. (1977). Physico-chemical basis of constructed firing keramіki. Stroyizdat, 270.

    10 Kruglitsky, N. N., Nichiporenko, S. P., Granovsky,I.G. (1976). Physico-chemical mechanics of disperse structures in magnetic fields. Sciences. Dumka, 193.

Published

2014-10-21

How to Cite

Оксамит, Т. В. (2014). Regulation of the structure formation of ceramic masses of the system multimineral clay– kaolin-feldspar raw materials. Eastern-European Journal of Enterprise Technologies, 5(5(71), 49–55. https://doi.org/10.15587/1729-4061.2014.28011