Simulation of working processes in the pyrolysis plant for waste recycling

Authors

  • Ростислав Дмитрович Іскович-Лотоцький Vinnitsya National Technical University 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021, Ukraine https://orcid.org/0000-0003-3920-3019
  • Ярослав Володимирович Іванчук Vinnitsya National Technical University 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021, Ukraine https://orcid.org/0000-0002-4775-6505
  • Ярослав Петрович Веселовський Vinnitsya National Technical University 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021, Ukraine https://orcid.org/0000-0002-4175-8286

DOI:

https://doi.org/10.15587/1729-4061.2016.59419

Keywords:

simulation, finite elements, temperature, combustion, heat exchange, recycling, turbulence, waste, velocity vector

Abstract

The results of theoretical research of thermo-physical processes as key working processes in the pyrolysis plant for waste recycling by numerical simulation are given. On the basis of the three-dimensional model of the pyrolysis plant for waste recycling, developed in the CAD-system with the KOMPAS-3D V16 software, in the CAE-system with the FlowVision software, using the finite element method, the temperature distribution and other hydrodynamic parameters of working areas and surfaces of the combustion chamber and the afterburning chamber are determined, which showed the presence of complete combustion of toxic or little toxic gases of combustion products. The areas of high temperatures for further insulation are identified.

The temperature distribution of surfaces of the cooling chamber of the pyrolysis plant for waste recycling proved the conformity of parameters of the output combustion products with the regulations of thermal pollution of the environment.

The temperature distribution along the heat-exchange unit walls allowed to estimate the efficiency of the heat-exchange unit in the municipal heating system and determine the prospects for future improvement and modernization.

Author Biographies

Ростислав Дмитрович Іскович-Лотоцький, Vinnitsya National Technical University 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021

Doctor of technical sciences, Professor, head of the department

Department of machine tools and automated production equipment

Ярослав Володимирович Іванчук, Vinnitsya National Technical University 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021

PhD, Associate professor

Department of machine tools and automated production equipment

Ярослав Петрович Веселовський, Vinnitsya National Technical University 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021

Postgraduate student

Department of machine tools and automated production equipment

References

  1. Iskovych–Lotoc'kyj, R. D., Ivanchuk, Ja. V., Povstenjuk, V. I., Veselovs'kyj, Ja. P. (2012). Pirolizna ustanovka utylizacii' medychnyh vidhodiv z dodatkovym ochyshhennjam atmosfernyh vykydiv. II Vseukrai'ns'ka mizhvuzivs'ka naukovo–tehnichna konferencija "Suchasni tehnologii' v promyslovomu vyrobnyctvi", 97.
  2. Uzakov, G. N, Rabbimov, R. T, Alijarova, L. A, (2014). Jeffektivnost' primenenija piroliznoj tehnologii dlja poluchenija al'ternativnogo topliva iz mestnyh organicheskih othodov. Molodoj uchenyj, 4, 280–283.
  3. Ishakov, T. D., Grachev, A. N., Bashkirov, V. N., Safin, R. G. (2008). Jenergo– i resursosberezhenie pri utilizacii otrabotannyh derevjannyhshpal metodom piroliza. Izvestija vuzov. Problemy jenergetiki, 11-12, 16–20.
  4. Vlasova, Ju. Ju., Kozina, L. N., Dzjuban A. M., Kas'kaev, P. P. (2015). Analiz faktorov, vlijajushhih na organizaciju i osobennosti szhiganija tverdogo topliva v promyshlennyh uslovijah. Vestnik NGIJeI, 6 (49), 34–38.
  5. Grønli, M. G., Melaaen, M. C. (2000). Mathematical Model for Wood PyrolysisComparison of Experimental Measurements with Model Predictions. Energy Fuels, 14 (4), 791–800. doi: 10.1021/ef990176q
  6. Kansa, E. J., Perlee, H. E., Chaiken, R. F. (1977). Mathematical model of wood pyrolysis including internal forced convection. Combustion and Flame, 29, 311–324. doi: 10.1016/0010-2180(77)90121-3
  7. Galgano, A., Blasi, C. D. (2003). Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Industrial & Engineering Chemistry Research, 42 (10), 2101–2111. doi: 10.1021/ie020939o
  8. Park, W. C., Atreya, A., Baum, H. R. (2010). Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combustion and Flame, 157 (3), 481–494. doi: 10.1016/j.combustflame.2009.10.006
  9. Iskovych-Lotoc'kyj, R. D., Veselovs'ka, N. R., Ivanchuk, Ja. V., Veselovs'kyj Ja. P. (2013). Rozrahunok temperaturnyh poliv v robochyh zonah piroliznoi' ustanovky. Mizhvuzivs'kyj zbirnyk naukovyh prac' "NAUKOVI NOTATKY", 42, 113–120.
  10. Iskovych–Lotoc'kyj, R. D., Ivanchuk, Ja. V., Ivashko, Je. I. (2013). Modeljuvannja procesu teploobminu v shpyndel'nomu vuzli ustanovky dlja rozpylennja vol'framu. Visnyk shidnoukrai'ns'kogo nacional'nogo universytetu im. V. Dalja, 2 (191), 63–68.
  11. Iskovich-Lotockij, R. D., Ivanchuk, Ja. V., Povstenjuk, D. V., Daniljuk, O. N. (2007). Ustanovka dlja utilizacii othodov. Mir tehniki i tehnologij, 12 (73), 36–37.
  12. Іskovich-Lotoc'kij, R. D., Povstenjuk, P. V., Shmataljuk, M. І., Daniljuk, O. M. (2007). Patent 23991 Ukraina, MPK F23 G5/00. Ustanovka dlja utilіzacіi vіdhodіv. № u 200702015; zajavl. 26. 02. 2007; opubl. 11. 06. 2007, Bjul. № 8.
  13. Іskovich-Lotoc'kij, R. D., Povstenjuk, V. І., Shmataljuk, M. І., Daniljuk, O. M. (2008). Patent 32098 Ukraina, MPK F23 G5/00. Ustanovka dlja utilіzacіi vіdhodiv. № u 200711073; zajavl. 08. 10. 2007; opubl. 12. 05. 2008, Bjul. № 9.
  14. Iskovych-Lotoc'kij, R. D., Ivanchuk, Ja. V., Povstenjuk, V. I., Kostjuk, G. V., Danyljuk, O. M., Veselovs'ka, N. R. (2011). Ustanovka dlja utylizacii' medychnyh vidhodiv z vidborom tepla ta oholodzhennjam. Zbirnyk naukovyh prac' VNAU. Serija: Tehnichni nauky, 7, 98–103.
  15. Iskovych–Lotoc'kyj, R. D, Ivanchuk, Ja. V, Tesovs'kyj, D. V, Veselovs'kyj, Ja. P. (2012). Zastosuvannja gibrydnogo modeljuvannja pry rozrobci ustanovok dlja utylizacii' vidhodiv. Tehnologichni kompleksy. Naukovyj zhurnal, 1,2 (5, 6), 122–126.
  16. Aksenov, A. A., Dyadkin, A. A., Gudzovsky, A. V.; Desideri, J.-A., Hirsch, C., Le Tallec, P., Pandolfi, M., Periaux, J. (Eds.) (2006). Numerical Simulation of Car Tire Aquaplaning. Computational Fluid Dynamics. JJohn Wiley&Sons, 815–820.
  17. Egolfopoulos, F. N., Holley, A. T., Law, C. K. (2007). An assessment of the lean flammability limits of CH4/air and C3H8/air mixtures at engine-like conditions. Proceedings of the Combustion Institute, 31 (2), 3015–3022. doi: 10.1016/j.proci.2006.08.018
  18. Magnussen, B. F., Hjertager, B. H. (1977). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion, 16 (1), 719–729. doi: 10.1016/s0082-0784(77)80366-4
  19. Sistema modelirovanija dvizhenija zhidkosti i gaza Flow Vision. Versija 2. 2. Rukovodstvo pol'zovatelja, 304.
  20. Zel'dovich, Ja. B., Barenblat, G. I., Librovch, V. B., Mahviladze, G. M. (1980). Matematicheskaja teorija gorenija i vzryva. Moscow: Nauka, 478.
  21. Wilcox, D. C., (1994). Turbulence modeling for CFD. DCW Industries, Inc, 460.
  22. Landau, L. D., Lifshic, E. M. (1988). Gidrodinamika. Teoreticheskaja fizika, 4, 736.
  23. Joshi, S., Loccisano, F., Yalin, A. P., Montgomery, D. T. (2011). On Comparative Performance Testing of Prechamber and Open Chamber Laser Ignition. Journal of Engineering for Gas Turbines and Power, 133 (12), 122801. doi: 10.1115/1.4003972
  24. Bel'deeva, L. N., Lazutkina, Ju. S., Komarova, L. F. (2009). Jekologicheski bezopasnoe obrashhenie s othodami. Barnaul: Azbuka, 172.
  25. Gorbacheva, L. A. (2009). Zarubezhnyj opyt musoroszhiganija. Jenergija: jekonomika, tehnologija, jekologija, 7, 49–54.
  26. Parfenov, V. P, Janvarev, I. A. (1998). Ocenka teplovoj jeffektivnosti teploobmennogo oborudovanija pri kombinirovannom ohlazhdenii szhatyh gazov v kompressornyh ustanovkah. Izvestija vuzov. Mashinostroenie, 1-3, 62–67.

Published

2016-02-07

How to Cite

Іскович-Лотоцький, Р. Д., Іванчук, Я. В., & Веселовський, Я. П. (2016). Simulation of working processes in the pyrolysis plant for waste recycling. Eastern-European Journal of Enterprise Technologies, 1(8(79), 11–20. https://doi.org/10.15587/1729-4061.2016.59419

Issue

Section

Energy-saving technologies and equipment