Analysis of the impact of impeller outlet width on the steepness of pressure characteristic

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.72122

Keywords:

characteristic curve, pump station, impeller outlet width, centrifugal pump

Abstract

The impeller outlet width is one of the most important geometrical parameters, which has a significant effect on the pressure characteristic of centrifugal pumps. The steepness of the pressure characteristic, in turn, determines selection of the pump control in the system. Finding a mathematical dependency between them will make it possible to design the impellers of centrifugal pumps with a predetermined steepness.

To find the dependence between the impeller outlet width and the steepness of a pressure characteristic, we carried out numerical simulation. 30 double-entry impellers of centrifugal pumps with a specific speed from 80 to 210 with different values of the width of the impeller were simulated.

Using numerical modeling data, we established dependences between the impeller outlet width b2 and the steepness of the pressure characteristic KH, and also consumable parameter qр, of the viewand . The coefficients a, k, E and F in the equations are variable and depend on the design features of Impeller. In order to use the established dependencies in the design of any double-entry impellers, it is necessary to determine the main geometric parameters of the impellers, which greatly influence the coefficients a, k, E and F.

Author Biographies

Viktoriya Miltykh, Sumy State University Rymskoho-Korsakova str., 2, Sumy, Ukraine, 40000

Applicant

Department of Applied Hydroaeromechanics

Mykola Sotnyk, Sumy State University Rymskoho-Korsakova str., 2, Sumy, Ukraine, 40000

Doctor of technical sciences, Associate Professor

Department of Applied Hydroaeromechanics

References

  1. Volkov, A. V. (2010). Povishenie effektivnosti raboti tsentrobegnih nasosov, nahodiashchihsiav ekspluatatsii. Novosti teplosnabgeniia, 10, 31–33.
  2. Europump & the Hydraulic Insti (2004). Variable Speed Pumping: A Guide to Successful Applications. Oxford, Elsevier, 170.
  3. Husak, O. H., Sotnyk, M. I. et al. (2008). Tehniko-ekonomichni vymohy do nasosnyh stancii vodoprovidnyh merezh zhytlovo-komunalnogo hospodarstva. Visnyk Natsionalnoho tehnichnoho universytetu “KPI”, 54, 247–251.
  4. Zaharov, R. Yu. (2006). Otsenka vliianiia krutizny napornoi harakteristiki tsentrobezhnyh nasosov na tehniko-ekonomicheskie pokazateli podkachvaiushchih orositelnyh nasosnyh stantsii. Stroitelstvo i tehnogennaia bezopasnost, 13, 135–138.
  5. Elin, A. V., Olshtynski, P. L., Tverdohleb, I. B. (2007). Zadacha obespecheniia trebuemoi formy napornoi harakteristiki lopastnyh nasosov – puti i metody resheniia. Vestnyk SumGU “Tehnicheskie nauki”, 1, 23–27.
  6. Lomakin, A. A. (1966). Tsentrobezhnie i osevye nasosy. Leningrad: Mashinostroenie, 364.
  7. Ovsiannikov, B. V. (1986). Teoriia i raschet agregatov pitaniia zhidkostnih raketnih dvigatelei. Moscow: Mashinostroenie, 376.
  8. Stepanoff, A. I. (1957). Centrifugal and Axial Flow Pumps. Theory, Design and Application. Florida, Krieger Publishing Company, 476.
  9. Durnov, P. I. (1985). Nasosy, ventiliatory, kompressory. Kyiv: Vyshcha shkola, 264.
  10. Aizenshtein, M. D. (1957). Tsentrobezhnie nasosy dlia neftianoi promyshlennosti. Leningrad: Gostoptehizdat, 364.
  11. Gűlich, J. F. (2010). Centrifugal Pumps. Berlin: Springer, 964. doi: 10.1007/978-3-642-40114-5
  12. Wang, B., Guan, H., Ye, Z. (2015). Numerical Study of a Fuel Centrifugal Pump with Variable Impeller Width for Aero-engines. International Journal of Turbo & Jet-Engines, 32 (4), 10–20. doi: 10.1515/tjj-2015-0010
  13. Shojaeefard, M. H., Tahani, M., Ehghaghi, M. B., Fallahian, M. A., Beglari, M. (2012). Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Computers & Fluids, 60, 61–70. doi: 10.1016/j.compfluid.2012.02.028
  14. Kurokava, J., Matsumoto, K. et al. (1998). Performances of centrifugal pumps of very low specific speed. Hydraulic machinery and cavitation: proceedings of the XIX IAHR Symposium: section on Hydraulic Machinery and Cavitation. Singapore, 2, 833–842.
  15. Tan, M.-g., Liu, H.-l., Yuan, S.-q., Wang, Y., Wang, K. (2009). Effects of Blade Outlet Width on Flow Field and Characteristics of a Centrifugal Pump. Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Vail, Colorado, 51–60.
  16. Djerroud, M., Dituba Ngoma, G., Ghie, W. (2011). Numerical Identification of Key Design Parameters Enhancing the Centrifugal Pump Performance: Impeller, Impeller-Volute, and Impeller-Diffuser. ISRN Mechanical Engineering, 2011, 1–16. doi: 10.5402/2011/794341
  17. Shmarlahu Yedidiah. (1996). Centrifugal Pump Users Guidebook: Problems and Solutions. New York, Chapman and Hall, 387.
  18. Liu, H., Ding, J., Dai, H., Tan, M., Tang, X. (2014). Numerical Research on Hydraulically Generated Vibration and Noise of a Centrifugal Pump Volute with Impeller Outlet Width Variation. Mathematical Problems in Engineering, 2014, 1–13. doi: 10.1155/2014/620389
  19. Shi, W., Zhou, L., Lu, W., Pei, B., Lang, T. (2013). Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width. Chinese Journal of Mechanical Engineering, 26 (1), 46–52. doi: 10.3901/cjme.2013.01.046

Downloads

Published

2016-06-30

How to Cite

Miltykh, V., & Sotnyk, M. (2016). Analysis of the impact of impeller outlet width on the steepness of pressure characteristic. Eastern-European Journal of Enterprise Technologies, 3(7(81), 15–20. https://doi.org/10.15587/1729-4061.2016.72122

Issue

Section

Applied mechanics