Modeling the heterogeneous catalytic recovery processes of aldehydes and ketones

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.99755

Keywords:

Meerwein-Ponndorf-Verley mechanism, inverse problem of kinetics, rate constant, heterogeneous catalysis, zeolites

Abstract

Mathematical models of the recovery reactions of cyclohexanone and anise aldehyde with subsequent esterification by the Meerwein-Ponndorf-Verley mechanism are constructed. Experimental research was conducted into recovery reactions of aldehydes and ketones in order to find the optimal catalyst for the recovery reaction of cyclohexanone and to establish the limiting stage in the recovery process of anise aldehyde. We analyzed the activity of three catalysts, in the presence of which the recovery reaction of cyclohexanone proceeded, and selected for further calculations and studies the most active zeolite – SnMgAl(СО3). By using the MathCad 15.0 programming environment, we solved the inverse problem of chemical kinetics for the examined reactions. It was found that the value of rate constant of the recovery reaction of cyclohexanone in the presence of zeolite SnMgAl(СО3) is the largest and reaches 0.2544 s-1, in other words, this is the most effective catalyst. As far as the recovery reaction of aldehyde anise is concerned, it was established that the first stage of this reaction (anise aldehyde recovery) proceeds slower than the second stage (anise alcohol esterification) and it is the limiting stage of the reaction. Results obtained in the course of experimental research might be used to solve the direct and inverse problems of chemical kinetics.

Author Biographies

Ivanna Skoretska, National Technical University of Ukraine “Igor Sikorskyi Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of Cybernetics of Chemical Technology Processes

Yuri Beznosyk, National Technical University of Ukraine “Igor Sikorskyi Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Cybernetics of Chemical Technology Processes

References

  1. Climent, M. J., Corma, A., Iborra, S. (2009). Mono- and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2 (6), 500–506. doi: 10.1002/cssc.200800259
  2. Moliner, M., Martinez, C., Corma , A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54 (12), 3560–3579. doi: 10.1002/anie.201406344
  3. Mehta, J. P., Parmar, D. K., Godhani, D. R., Nakum, H. D., Desai, N. C. (2016). Heterogeneous catalysts hold the edge over homogeneous systems: Zeolite-Y encapsulated complexes for Baeyer-Villiger oxidation of cyclohexanone. Journal of Molecular Catalysis A: Chemical, 421, 178–188. doi: 10.1016/j.molcata.2016.05.016
  4. Corma, A., Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46 (1-2), 298–300. doi: 10.1002/anie.200604018
  5. Jiménez-Sanchidrián, C., Ruiz, J. R. (2014). Tin-containing hydrotalcite-like compounds as catalysts for the Meerwein-Ponndorf-Verley reaction. Applied Catalysis A: General, 469, 367–372. doi: 10.1016/j.apcata.2013.09.049
  6. Kang, Z., Zhang, X., Liu, H., Qiu, J., Yeung, K. L. (2013). A rapid synthesis route for Sn-Beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer-Villiger oxidation. Chemical Engineering Journal, 218, 425–432. doi: 10.1016/j.cej.2012.12.019
  7. Seifert, A., Rohr, K., Mahrwald, R. (2012). Acid-catalyzed aldol-Meerwein-Ponndorf-Verley-etherification reactions – access to defined configured quaternary stereogenic centers. Tetrahedron, 68 (4), 1137–1144. doi: 10.1016/j.tet.2011.11.069
  8. Sheldon, R. A., Arends, I. W. C. E., Hanefeld, U. (2007). Green Chemistry and Catalysis. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 434. doi: 10.1002/9783527611003
  9. Koreniuk, A., Maresz, K., Mrowiec-Białoń, J. (2015). Supported zirconium-based continuous-flow microreactor for effective Meerwein-Ponndorf-Verley reduction of cyclohexanone. Catalysis Communications, 64, 48–51. doi: 10.1016/j.catcom.2015.01.021
  10. Wang, J., Okumura, K., Jaenicke, S., Chuah, G.-K. (2015). Post-synthesized zirconium-containing Beta zeolite in Meerwein-Ponndorf-Verley reduction: Pros and cons. Applied Catalysis A: General, 493, 112–120. doi: 10.1016/j.apcata.2015.01.001
  11. Luo, H. Y., Bui, L., Gunther, W. R., Min, E., Roman-Leshkov, Y. (2012). Synthesis and Catalytic Activity of Sn-MFI Nanosheets for the Baeyer–Villiger Oxidation of Cyclic Ketones. ACS Catalysis, 2 (12), 2695–2699. doi: 10.1021/cs300543z
  12. Luo, H. Y., Consoli, D. F., Gunther, W. R., Roman-Leshkov, Y. (2014). Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein-Ponndorf-Verley reduction of methyl levulinate to γ-valerolactone. Journal of Catalysis, 320, 198–207. doi: 10.1016/j.jcat.2014.10.010
  13. Climent, M. J., Corma, A., Iborra, S., Sabater, M. J. (2014). Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis, 4 (3), 870–891. doi: 10.1021/cs401052k
  14. Humerov, A. M., Valeev, N. N., Emelianov, V. M. (2008). Matematycheskoe modelyrovanye khymyko-tekhnolohycheskykh protsessov. Moscow: KolosS, 158.
  15. Prymyskaya, S., Beznosyk, Y., Reschetilowski, W. (2015). Simulation the gas simultaneous adsorption over natural and modified zeolite. Eastern-European Journal of Enterprise Technologies, 2 (6 (74)), 34–37. doi: 10.15587/1729-4061.2015.39786
  16. Mahnytnye meshalky s podohrevom: Rukovodstvo po ekspluatatsyy (2010). DAIHAN Scientific Co., Ltd, 16.
  17. Nauchno-proyzvodstvennaia fyrma “Analytyka”. Available at: http://www.analytica.com.ua/kristLux_4000M.htm
  18. Bugaieva, L., Beznosyk, Y., Boiko, T., Vashchuk, D., Skoretska, I. (2016). Modeling of kinetics of aldehydes and ketones oxidation. SSCHE16 – 43st International Conference of SSCHE. Tatranske Matliare, 29.
  19. Korobov, V. Y., Ochkov, V. F. (2009). Khymycheskaia kynetyka: vvedenye s Mathcad, Maple, MCS. Moscow: Horiachaia lynyia-Telekom, 384.
  20. Beznosyk, Y. (2014). Mathematical modeling of chemisorption process at chlororganic productions. Technology audit and production reserves, 3 (5 (17)), 28–30. doi: 10.15587/2312-8372.2014.25358

Downloads

Published

2017-06-08

How to Cite

Skoretska, I., & Beznosyk, Y. (2017). Modeling the heterogeneous catalytic recovery processes of aldehydes and ketones. Eastern-European Journal of Enterprise Technologies, 3(6 (87), 36–43. https://doi.org/10.15587/1729-4061.2017.99755

Issue

Section

Technology organic and inorganic substances