Research into technological process of convective fruit drying in a solar dryer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103846

Keywords:

solar energy, solar fruit dryer, diffusion, moisture content, heat and mass transfer, intensification, convective drying

Abstract

We proposed a generalized procedure of convective fruit drying, which takes into account comprehensive combination of thermal-physical and physical-chemical properties of fruit with their kinematic heat and mass exchange characteristics.

We developed a mathematical model of heat, moisture and mass exchange for convective fruit drying, which considers moisture-yielding velocity of the dried material in the operation zone of the heat carrier under conditions of diffusion process of moisture transfer in the dried material. The given model allows us to determine heat and mass exchange characteristics and intensity of the drying process.

We proposed the systems of differential equations of heat and moisture transfer in the process of convective fruit drying for parabolic and uniformed original distribution of temperature and moisture content. As a result of the solution of a system of differential equations, we obtained appropriate dependences to determine the energy of bound moisture, moisture content on the surface and in the center of the material, difference of moisture content between the surface and central layers, as well as critical moisture content.

The obtained results may be used when predicting the heat and mass exchange processes, for improvement of technology and equipment for fruit drying in the solar dryer, for increasing technological and energy efficiency of the process.

Author Biographies

Serhiy Korobka, Lviv National Agrarian University Volodymyra Velykoho str., 1, Dublyany, Ukraine, 80381

PhD

Department of Energy

Mykhailo Babych, Lviv National Agrarian University Volodymyra Velykoho str., 1, Dublyany, Ukraine, 80381

PhD

Department of Energy

Roman Krygul, Lviv National Agrarian University Volodymyra Velykoho str., 1, Dublyany, Ukraine, 80381

PhD

Department of Energy

Nataliya Tolstushko, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Assistant

Department of forest complex equipment and theory of mechanisms machines

Mykola Tolstushko, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of forest complex equipment and theory of mechanisms machines

References

  1. Ozarkiv, I. M., Kobrynovych, M. S., Kopynets', Z. P. (2007). Osoblyvosti perenesennya volohy v protsesi sushinnya derevyny. Naukovyy visnyk Natsional'noho lisotekhnichnoho universytetu, 17.4, 124–125.
  2. Khazimov, Z. M., Bora, G. C., Khazimov, K. M., Khazimov, M. Z. (2014). Modeling of the motion of free convective drying agent in plastic helio dryer. Journal of Engineering Thermophysics, 23 (4), 306–315. doi: 10.1134/s1810232814040080
  3. Kituu, G. M., Shitanda, D., Kanali, C. L., Mailutha, J. T., Njoroge, C. K., Wainaina, J. K., Silayo, V. K. (2010). Thin layer drying model for simulating the drying of Tilapia fish (Oreochromis niloticus) in a solar tunnel dryer. Journal of Food Engineering, 98 (3), 325–331. doi: 10.1016/j.jfoodeng.2010.01.009
  4. Janjai, S., Phusampao, C., Nilnont, W., Pankaew, P. (2014). Experimental performance and modeling of a greenhouse solar dryer for drying macadamia nuts. International Journal of Scientific & Engineering Research, 5 (6), 1155−1161.
  5. Manoj, M., Manivaimair, A. (2013). Simulation of solar dryer utilizing green house effect for cocoa bean drying. International Journal of Advanced Engineering Technology, IV (II), 24−27.
  6. Holmanskiy, A. S., Tilov, A. Z., Tyuhov, I. I. (2012). Issledovanie kinetiki sushki rastitel'nyh pishchevyh produktov. Vestnik Rossiyskoy akademii sel'skohozyaystvennyh nauk, 2, 15–17.
  7. Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R., Ilyas, S. M. (2007). Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. Journal of Food Engineering, 79 (1), 176–180. doi: 10.1016/j.jfoodeng.2006.01.041
  8. Azimi, А., Tavakoli, T., Beheshti, H. K., Rahimi, A. (2012). Experimental Study on Eggplant Drying by an Indirect Solar Dryer and Open Sun Drying. Iranica Journal of Energy & Environment, 3 (4), 347−353. Available at: http://www.ijee.net/Journal/ijee/vol3/no4/9.pdf
  9. Korobka, S. V. (2014). Pat. No. 97139 UA. Heliosusharka z teplovym akumulyatorom. MPK A23L3/00. No. UA 97139U; declareted: 26.12.2014; published: 25.02.2016, Bul. No. 4, 3.
  10. Korobka, S., Babych, M. (2017). Substatiation of the constructive-technologocal parameters of a solar fruit dryer. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 13–19. doi: 10.15587/1729-4061.2017.90299
  11. Babych, M., Korobka, S. (2015). Design procedure of the duration of drying fruit in solar installations. MOTROL. Commission of Motorization and Energetics in Agriculture, 17 (4), 31−37.

Downloads

Published

2017-06-30

How to Cite

Korobka, S., Babych, M., Krygul, R., Tolstushko, N., & Tolstushko, M. (2017). Research into technological process of convective fruit drying in a solar dryer. Eastern-European Journal of Enterprise Technologies, 3(8 (87), 55–63. https://doi.org/10.15587/1729-4061.2017.103846

Issue

Section

Energy-saving technologies and equipment