Study of functioning of a vortex tube with a two-phase flow

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108424

Keywords:

dry cleaning, dust flow, vortex tube, Ranque effect, hydrodynamics, dust collection efficiency, agglomeration of particles, mathematical model

Abstract

As a result of consideration of the phenomena occurring in the vortex tubes, it has been established that there are two forms of swirling dust-gas flow. The circumferential velocity profile in the zone of swirler and return flow is close to the quasi-solid type of rotation. In the peripheral zone, it is close to the quasi-potential type. It has been established by simulation that in the zone of quasi-solid rotation and subsequent transition to a quasi-solid flow, aggregation of particles takes place due to an intense collision of the dust particles drifting to the walls of the vortex tube. There is a 5 to 10 times increase in the determining particle size depending on the value of their specific surface area. In the zone of quasi-potential flow, the bulk of the solid dust particles is concentrated near the tube walls in a zone close to the boundary layer and the dust-free gas concentrates in a zone close to the axial flow. Taking into account the effect of uneven distribution of the braking temperature and consequently creation of a positive gradient of gas temperatures from the tube axis to the walls, thermodynamic and kinetic conditions arise for destruction of CO, NOx, SOx gas impurities (in the case of hot gas with a temperature above 673 K). Thus, when preparing a dusty gas stream from a process source before feeding it to the dust collector, the vortex tube creates conditions for complex purification of the gas stream from dust and gas impurities. Also, efficiency of dust removal in the main unit increases to 99.9 %. This will make it possible to lower the industrial negative impact on atmosphere and reduce threat of global consequences for future generations.

Author Biographies

Valery Shaporev, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of chemical technique and industrial ecology

Inna Pitak, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of chemical technique and industrial ecology

Oleg Pitak, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Labour Protection and the Environmentl 

Serhii Briankin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Head of course

Faculty of military training

References

  1. Chekalova, L. V. (2004). Ekotekhnika. Zashchita atmosfernogo vozduha ot vybrosov pyli, aerozoley i tumanov. Yaroslavl': Rus', 424.
  2. Zaytsev, O. N. (2002). Issledovanie protsessov lokalizatsii teplovyh vybrosov zakruchennymi potokami. Ekotekhnologiya i resursosberezhenie, 6, 70–72.
  3. Osipenko, V. V., Osipenko, V. D. (2009). Pat. No. 2430971 RU. Sposob suhoy ochistki domennogo gaza. MPK C21B 7/22. No. 2009132782/02; declareted: 31.08.2009; published: 10.10.2011, Bul. No. 28.
  4. Evans, P., Federston, U. B. (2008). Pat. No. 2415718 RU. Tsiklon s vhodnym patrubkom-separatorom i obvodnymi trubami dlya otvoda melkih chastits. MPK B04 C5/02 (2006.01), B04 C5/12 (2006.01), C21 B7/22 (2006.01). No. 2009134521/05; declareted: 13.02.2008; published: 10.04.2011, Bul. No. 10.
  5. Grunewald, G. (2010). Initial soil development in alkaline waste of soda production. Der Andere Verlag, 119.
  6. Richard, O. M. (2014). Environmental engineering: principles and practice. Wiley-Blackwell, 662.
  7. Vetoshin, A. G. (2016). Inzhenernaya zashchita okruzhayushchey sredy ot vrednyh vybrosov. Moscow: Infra-Inzheneriya, 416.
  8. Zlygostev, A. S. Metody ochistki i obezvrezhivaniya ventilyatsionnyh i tekhnologicheskih vybrosov. Zelenaya planeta. Available at: http://ecologylib.ru
  9. Hitrova, I. V., Novozhilova, T. B. (2004). Tekhnologiya utilizatsyi gazovyh vybrosov, tverdyh othodov i shlakov. Kharkiv: NTU «KhPI», 218.
  10. Grivko, E. V., Ishanova, O. S. (2013). Otsenka stepeni antropogennoy preobrazovannosti prirodno-tekhnogennyh sistem. Orenburg: OOO IPK "Universitet", 128.
  11. Amirov, R. Ya., Urakaev, I. M., Gareev, R. G. (2000). Tekhnologicheskie sistemy: Protsessy, konstruktsii, effektivnost'. Ufa: Gilem, 600.
  12. Batluk, V. A., Melnikov, O. V., Mirus, O. V. (2011). Zalezhnist efektyvnosti pylovlovlennia vidtsentrovoinertsiynykh aparativ vid konstruktsyi bunkera. Promyslova hidravlika i pnevmatyka, 2 (32), 44–47.
  13. Shaporev, V. P., Vasyliev, M. I. (2011). Deiaki aspekty modeliuvannia prystroiu kontaktuvannia faz. Promyslova hidravlika i pnevmatyka, 2 (32), 41–43.
  14. Kutepov, A. M., Latkin, A. S. (1999). Vihrevye protsessy dlya modifikatsyi dispersnih sistem. Moscow: Nauka, 270.
  15. Bogomolov, A., Sergina, N., Kondratenko, T. (2016). On Inertial Systems, Dust Cleaning and Dust Removal Equipment, and Work Areas in the Production of Aerated Concrete from the Hopper Suction Apparatus CSF. Procedia Engineering, 150, 2036–2041. doi: 10.1016/j.proeng.2016.07.290
  16. Chelnokov, A. A., Mironchik, A. F., Zhmyhov, I. N. (2016). Inzhenernye metody ohrany atmosfernogo vozduha. Minsk: Vysheyshaya shkola, 397.
  17. Thakare, H. R., Monde, A., Parekh, A. D. (2015). Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renewable and Sustainable Energy Reviews, 52, 1043–1071. doi: 10.1016/j.energy.2015.03.058
  18. Volkov, K. N., Deryugin, Yu. N., Emel'yanov, V. N., Karpenko, A. G., Kozelkov, A. S., Teterina, I. V. (2014). Metody uskoreniya gazodinamicheskih raschetov na nestrukturirovannyh setkah– Moscow: FIZMATLIT, 536.
  19. Landau, L. D., Lifshits, E. M. (2013). Teoreticheskaya fizika. Vol. I. Moscow: «FIZMATLIT», 224.
  20. Molochko, F. I. (2015). O sushchnosti vihrevogo effekta Ranka-Hil'sha. Problemy obshchey energetiki, 4 (43), 58–60.
  21. Yahno, O. M., Matiega, V. M., Krivosheev, V. S. (2004). Gidrodinamicheskiy nachal'nyy uchastok. Chernovtsy, 145.
  22. Zuykov, A. L. (2014). Gidravlicheskoe modelirovanie kontrvihrevyh techeniy. Vestnik MGSU, 6, 114–125.
  23. Akhmetov, D. G., Akhmetov, T. D. (2015). Swirl flow in vortex chamber. Science Bulletin, 6 (4), 109–120. doi: 10.17117/nv.2015.04.109
  24. Frumin, V. M., Gut, V. M., Burin, V. L. et. al. (2016). Sposoby suhoy ochistki gaza kal'tsinatsyi ot sodovoy pyli. Himiya i tekhnologiya osnovnoy himicheskoy promyshlennosti, 78, 52−57.
  25. Gutsol, A. F. (1997). The Ranque effect. Uspekhi Fizicheskih Nauk, 167 (6), 665–687. doi: 10.3367/ufnr.0167.199706e.0665
  26. Shaporev, V. P., Pitak, I. V., Vasil'ev, M. I. (2015). To a question about the nature of the relationship of water to calcium hydroxide. Visnyk NTU «KhPI», 50 (1159), 121–127.
  27. Shaporev, V. P., Kogut, M. D. (1996). Priblizhennoe reshenie uravneniya koagulyatsyi s nekotorymi model'nymi yadrami. Ekologiya himicheskoy tekhniki i biotekhnologyi, 2, 73–77.
  28. Pitak, I. V. (2014). Study of experimental-industrial design of rotary vortex machine. Technology audit and production reserves, 3 (2 (17)), 33–38. doi: 10.15587/2312-8372.2014.26212
  29. Kolyadin, E. A. (2007). Vliyanie zakrutki potoka gazov na konvektivnyi teploobmen v utilizatsionnyh gazotrubnyh kotlah. Vestnik Astrahanskogo gosudarstvennogo tekhnicheskogo universiteta, 2 (37), 159–162.
  30. Bona, C., Palenzuela-Luque, C., Bona-Casas, C. (2009). Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics. doi: 10.1007/978-3-642-01164-1
  31. Konovalov, V. I., Orlov, A. Yu., Gatapova, N. T. (2010). Sushka i drugie tekhnologicheskie protsessy s vihrevoy trubkoy Ranka-Hil'sha: vozmozhnosti i eksperimental'naya tekhnika. Estnik TGTU, 16 (4), 803–825.
  32. Bochkarev, V. V. (2016). Optimizatsiya himiko-tekhnologicheskih protsessov. Moscow: Yurayt, 263.
  33. Korkodinov, Ya. A., Hurmatullin, O. G. (2012). Primenenie effekta Ranka-Hil'sha. Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta, 4, 42–53.
  34. Protopopov, R. Ya., Filenko, O. N., Shaporev, V. P. (2012). About reactor modeling for organic impurities thermal neutralization. Eastern-European Journal of Enterprise Technologies, 2 (12 (56)), 22–26. Available at: http://journals.uran.ua/eejet/article/view/3925/3593
  35. Protopopov, R. Ya. (2012). Analiz termichnoho metodu zneshkodzhennia hazovykh vykydiv vid orhanichnykh spoluk. Inovatsiini shliakhy modeliuvannia bazovykh haluzei promyslovosti, enerho- ta resursozberezhennia, okhorona navkolyshnoho seredovyshcha. Kharkiv: UkrHNTTs «Enerhostal», 379–386.
  36. Tovazhnyans'kiy, L. L., Pertsev, L. P., Shaporev, V. P. (2004). Teploenergetika pogruzhnogo goreniya v reshenyi problem teplosnabzheniya i ekologyi Ukrainy. Intehrovani tekhnolohii ta enerhozberezhennia, 3, 3–12.

Downloads

Published

2017-08-22

How to Cite

Shaporev, V., Pitak, I., Pitak, O., & Briankin, S. (2017). Study of functioning of a vortex tube with a two-phase flow. Eastern-European Journal of Enterprise Technologies, 4(10 (88), 51–60. https://doi.org/10.15587/1729-4061.2017.108424