Selection of new working fluids for a heat-using compression refrigerating machine with the block «turbine- compressor»

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142061

Keywords:

heat-using refrigerating machine, block «turbine-compressor», working fluids, thermodynamic properties

Abstract

The compression heat-using refrigerating machines operating in the Chistiakov-Plotnikov cycle use recycled waste heat of power machines as primary energy for producing cold of various temperature potentials thus saving fuel and energy resources. Development and improvement of machines is associated with the use of new working fluids. A selecting method of working fluids for a machine with a block «turbine-compressor» was proposed from the standpoints of such fundamental characteristics as energy saving and environmental safety. Mutual influence of properties of R134a, R290, R401a, R410a, R407a, R507, R600, R717 working fluids and design values of the block «turbine-compressor» in the given temperature regime of the thermodynamic cycle were studied with observance of equality of turbine and compressor powers. Design values of the full-size block «turbine-compressor» sample and the results of its experimental studies with the use of previous working fluids were used for the study.

The method of selection of the working fluids for the cold supply system of a particular consumer (a fruit storage) equipped with a small power machine was demonstrated on a particular example for a given temperature regime of cold production and the design values of the block. Introduction of the dimensionless equilibrium criterion in the analysis has made it possible to establish and evaluate dependence of the block design values on thermodynamic properties of the working fluids and conditions of its work and the field of rational application of any working fluids for a particular block design. The compression heat-using refrigerating machine is capable of efficient cold production with the studied working fluids in the trigeneration system of a small power machine.

Author Biographies

Larisa Morozyuk, Odessa National Academy of Food Technologies Kanatna str., 112, Оdеssа, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of cryogenic technique

Bohdan Hrudka, Odessa National Academy of Food Technologies Kanatna str., 112, Оdеssа, Ukraine, 65039

Assistant

Department of cryogenic technique

Olena Yuzhakova, Odessa National Academy of Food Technologies Kanatna str., 112, Оdеssа, Ukraine, 65039

PhD, Associate Professor

Department of Ukrainian studies and Linguodidactics

References

  1. Berlitz, T., Satzger, P., Summerer, F., Ziegler, F., Alefeld, G. (1999). A contribution to the evaluation of the economic perspectives of absorption chillers. International Journal of Refrigeration, 22 (1), 67–76. doi: https://doi.org/10.1016/s0140-7007(98)00040-1
  2. Aly, W. I. A., Abdo, M., Bedair, G., Hassaneen, A. E. (2017). Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases. Applied Thermal Engineering, 114, 621–630. doi: https://doi.org/10.1016/j.applthermaleng.2016.12.019
  3. Chen, Y., Han, W., Jin, H. (2016). Analysis of an absorption/absorption–compression refrigeration system for heat sources with large temperature change. Energy Conversion and Management, 113, 153–164. doi: https://doi.org/10.1016/j.enconman.2016.01.063
  4. Jiang, L., Roskilly, A. P., Wang, R. Z., Wang, L. W. (2018). Analysis on innovative resorption cycle for power and refrigeration cogeneration. Applied Energy, 218, 10–21. doi: https://doi.org/10.1016/j.apenergy.2018.02.174
  5. Chen, G., Volovyk, O., Zhu, D., Ierin, V., Shestopalov, K. (2017). Theoretical analysis and optimization of a hybrid CO 2 transcritical mechanical compression – ejector cooling cycle. International Journal of Refrigeration, 74, 86–94. doi: https://doi.org/10.1016/j.ijrefrig.2016.10.002
  6. Petrenko, V. O., Huang, B. J., Ierin, V. O. (2011). Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle. International Journal of Refrigeration, 34 (7), 1649–1656. doi: https://doi.org/10.1016/j.ijrefrig.2010.11.012
  7. Barenboym, A. B. (1974). Maloraskhodnye freonovye turbokompressory. Moscow: Mashinostroenie, 224.
  8. Barenboym, A. B. (2000). Maloraskhodnye turbokompressory dlya kondicionirovaniya vozduha i ohlazhdeniya apparatury v transporte. Odessa: Studiya «Negociant», 265.
  9. Barenboym, A. B. (2001). Turbomashiny dlya ohlazhdeniya nadduvochnogo vozduha dvigateley vnutrennego sgoraniya. Odessa: Studiya «Negociant», 98.
  10. Barenboym, A. B. (2004). Holodil'nye centrobezhnye kompressory: monografiya. Odessa, 208.
  11. Barenboim, А. B., Morosuk, T. V., Morosuk, L. I. (1998). Heat – using refrigeration machines for agriculture. Refrigeration science and technology, 6, 216–220.
  12. Morozyuk, L. I., Morozyuk, T. V., Gayduk, S. V. (2014). Thermodynamic analysis of heat-energized refrigeration machine with carbon dioxide. Eastern-European Journal of Enterprise Technologies, 2 (8 (68)), 36–44. doi: https://doi.org/10.15587/1729-4061.2014.22990
  13. Moroziuk, L. I., Haiduk, S. V., Hrudka, B. H. (2016). Analysis of the schematics of the compression heat-driven refrigeration machine with R744. Eastern-European Journal of Enterprise Technologies, 1 (8 (79)), 29–39. doi: https://doi.org/10.15587/1729-4061.2016.59470
  14. Morosuk, L. I., Gaiduk, S. V., Grudka, B. G., Korzhuk, D. V. (2017). Low-Temperature Heat-Driven Compression Refrigeration Machines with R744. Refrigeration engineering and technology, 53 (2), 4–13. doi: https://doi.org/10.15673/ret.v53i2.588
  15. Morosuk, T. et. al. (2016). Study of a tri-generation system based on a supercritical CO2 cycle. Proceedings 1st European Seminar on Supercritical CO2 (sCO2) Power Systems. Vienna.
  16. Stirlin, H. (1964). Beitragzumtheorie der absorption-kaeltemaschintn. Kaeltechnik 16.
  17. Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negociant», 712.

Downloads

Published

2018-09-12

How to Cite

Morozyuk, L., Hrudka, B., & Yuzhakova, O. (2018). Selection of new working fluids for a heat-using compression refrigerating machine with the block «turbine- compressor». Eastern-European Journal of Enterprise Technologies, 5(8 (95), 33–40. https://doi.org/10.15587/1729-4061.2018.142061

Issue

Section

Energy-saving technologies and equipment