Construction of the integrated method to model a system for measuring the density of infrared radiation flows

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.145696

Keywords:

Volterra integral equation, infrared radiation, measurement system, dynamic correction

Abstract

We have constructed an integrated method to model the system of measuring the density of flows of infrared radiation based on solving the inverse problems of dynamics using the Volterra equation of the first kind and focusing on solving the problem on dynamic correction. Solving a problem on the structural correction of the dynamic characteristics of the system for measuring the density of flows implies the construction and application in a transforming channel or a circuit in the system of a certain unit. This unit, owing to its specially formed dynamic properties, ensures the best dynamic characteristics of the entire system.

We have experimentally verified the technique for the compensation for a dynamic error. To this end, the experiments were conducted to measure the density of a non-stationary flow of infra-red radiation with the assigned law of change, which is characteristic of the practical working conditions for receivers. A change in the density of the incident flow of infrared radiation was achieved at the expense of the receiver's rotation around the axis that passes through the middle of its receiving surface, in the flow of the stationary emitter. The result of the experiment is the derived nonlinear approximation of the experimentally obtained transitional characteristic in the form of the receiver's response to the sinusoidal flow of infrared radiation.

It should be specifically noted that the results of numerical simulation and the experiment show a satisfactory convergence, which allows us to argue about the correct choice of the model. The developed algorithms are capable to provide a numerical implementation of integrated models and serve as the basis for constructing high-performance specialized microprocessor systems to work in real time. That has made it possible to successfully implement the dynamic correction of the system for measuring flows of infrared radiation and to significantly increase its accuracy. A combined application of the devised method for solving mathematical problems and computer tools would provide an opportunity to improve the efficiency of processes to synthesize and design computational devices for correcting means of measurement

Author Biographies

Alexander Sytnik, Cherkassy state technological university Shevchenka blvd., 460, Cherkassy, Ukraine, 18006

PhD, Professor, Head of Department

Department of electrical systems

Inga Semko, Cherkassy state technological university Shevchenka blvd., 460, Cherkassy, Ukraine, 18006

PhD

Department of electrical systems

Valentyn Tkachenko, Cherkassy state technological university Shevchenka blvd., 460, Cherkassy, Ukraine, 18006

PhD, Associate Professor

Department of electrical systems

Konstantin Klyuchka, Cherkassy state technological university Shevchenka blvd., 460, Cherkassy, Ukraine, 18006

PhD, Associate Professor

Department of electrical systems

Sergey Protasov, Limited Liability Company «Donsnab Livoberezhzhya» Obukhova str., 41, Zolotonosha, Ukraine, 19700

PhD, Associate Professor

References

  1. Borisov, Yu. (1976). Infrakrasnye izlucheniya. Moscow: Energiya, 56.
  2. Zavalij, A., Janovich, I. (2009). System of infra-red isothermal heating of a surface. Мotrol, 11V, 172–185. Available at: http://www.pan-ol.lublin.pl/wydawnictwa/Motrol11b/Zavalij.pdf
  3. Bognár, G., Szabó, P. G., Takács, G. (2015). Generalization of the thermal model of infrared radiation sensors. Microelectronics Journal, 46 (6), 543–550. doi: https://doi.org/10.1016/j.mejo.2015.03.024
  4. Murtaza, S. S., Khreich, W., Hamou-Lhadj, A Bener, A. B. (2016). Mining trends and patterns of software vulnerabilities. Journal of Systems and Software, 117, 218–228. doi: https://doi.org/10.1016/j.jss.2016.02.048
  5. Granovskiy, V. A. (1984). Dinamicheskie izmereniya: Osnovy metrologicheskogo obespecheniya. Leningrad: Energoatomizdat, 224.
  6. Lupachev, A., Sapelkin, I., Taik, Y. T. (2014). Application of forcing for sensors dynamic characteristics correction. 2014 3rd Mediterranean Conference on Embedded Computing (MECO). doi: https://doi.org/10.1109/meco.2014.6862698
  7. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., Bulnes, F. (2014). Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors, 14 (7), 12305–12348. doi: https://doi.org/10.3390/s140712305
  8. Ibarra-Castanedo, C., Tarpani, J. R., Maldague, X. P. V. (2013). Nondestructive testing with thermography. European Journal of Physics, 34 (6), S91–S109. doi: https://doi.org/10.1088/0143-0807/34/6/s91
  9. Enaleev, R. Sh., Krasina, I. V., Gasilov, V. S., Tuchkova, O. A., Hayrullina, L. I. (2013). Izmerenie vysokointensivnyh teplovyh potokov. Vestnik Kazanskogo tekhnologicheskogo universiteta, 16 (15), 298–302.
  10. Lee, H., Chai, K., Kim, J., Lee, S., Yoon, H., Yu, C., Kang, Y. (2014). Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux. Energy, 66, 63–69. doi: https://doi.org/10.1016/j.energy.2013.04.081
  11. Zhidkova, N., Volkov, V. (2014). Effektivnost' kompleksnoy izmeritel'noy sistemy v usloviyah sluchaynoy sredy. Fundamental'nye issledovaniya, 12, 1394–1399.
  12. Gromov, Yu. Yu., Balyukov, A. M., Ishchuk, I. N., Vorsin, I. V. (2014). Matematicheskaya model' avtomatizirovannoy sistemy ispytaniy IK-zametnosti ob'ektov v usloviyah neopredelennosti. Promyshlennye ASU i kontrollery, 7, 12–19.
  13. Yuldasheva, M. T. (2017). Korrekciya dinamicheskih pogreshnostey izmeritel'nyh preobrazovateley s pomoshch'yu cifrovyh fil'trov. Molodoy ucheniy, 4, 93–95.
  14. Kulikovskiy, K. L., Lange, P. K. (2011). Korrekciya dinamicheskoy pogreshnosti inercionnyh izmeritel'nyh preobrazovateley s peredatochnoy funkciey vtorogo poryadka. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 4 (32), 62–68.
  15. Sytnik, A. A., Klyuchka, K. N., Protasov, S. Yu. (2013). Primenenie integral'nyh dinamicheskih modeley pri reshenii zadachi identifikacii parametrov elektricheskih cepey. Izvestiya Tomskogo politekhnicheskogo universiteta, 322 (4), 103–106.
  16. Verlan', A. F., Sizikov, V. S. (1986). Integral'nye uravneniya: metody, algoritmy, programmy. Kyiv: Naukova dumka, 544.
  17. Mustafov, I. R., Sidorov, D. N., Sidorov, N. A. (2016). O regulyarizacii po Lavrent'evu integral'nyh uravneniy pervogo roda v prostranstve nepreryvnyh funkciy. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 15, 62–77.

Downloads

Published

2018-10-26

How to Cite

Sytnik, A., Semko, I., Tkachenko, V., Klyuchka, K., & Protasov, S. (2018). Construction of the integrated method to model a system for measuring the density of infrared radiation flows. Eastern-European Journal of Enterprise Technologies, 5(5 (95), 47–52. https://doi.org/10.15587/1729-4061.2018.145696

Issue

Section

Applied physics