Optimization of the deposition conditions for Ni(OH)2 films for electrochromic elements of “smart” windows

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732

DOI:

https://doi.org/10.15587/1729-4061.2019.162572

Keywords:

Ni(OH)2, nickel hydroxide, electrochromism, NiOOH, film, electrodeposition, cyclic voltamperometry, concentration, nickel nitrate

Abstract

Thestudywasconductedinordertodeterminethe influenceoftwofactorsonelectrodepositionofNi(OH)2 films: concentrationofnickelnitratein the electrolyteanddrying stage between deposition and electrochemical and optical tests. For deposition, pure solutions of nickel nitrate without additives were used, so that the presence of the latter did not complicate the analysis of the data obtained.

As a result, two series of films were prepared from electrolytes with nickel nitrate concentrations of 0.01, 0.1 and 1 M. The difference between the two series is the presence or absence of drying stage after deposition. Drying was conducted under mild conditions at room temperatures.

Electrochemical and optical characteristics were evaluated by means of cyclic voltamperometry with simultaneous recording of changes in film transparency.

As a result of analysis of the obtained data, it was found that uniform films with roughly equal thickness are obtained within the nickel nitrate concentration range from 0.01 to 0.1 M. For solutions with the nickel nitrate concentration of 1 М, deposition occurs with significant non-uniformity. A hypothesis was proposed, in which such behavior is explained by redistribution of current density over the electrode surface due to the high conductivity of the concentrated nickel nitrate solution. In turn, the redistribution of current density results in a significantly high current density on the electrode surface near the electrolyte-air boundary. Such an increase could result in shifting of the reaction front away from the electrode or formation of Ni(OH)2 with high thickness. The latter would lose contact with the electrode and fall off.

It was also found that drying process has a significant effect on the structure and properties of the films. Drying process was also found to impact the appearance of nickel hydroxide films due to film cracking. It was also assumed that electrochemically deposited nickel hydroxide contains a large amount of crystal water

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Senior Researcher

Competence center "Ecological technologies and systems"

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Senior Researcher

Competence center "Ecological technologies and systems"

References

  1. Deb, S. K. (1969). A Novel Electrophotographic System. Applied Optics, 8 (S1), 192. doi: https://doi.org/10.1364/ao.8.000192
  2. Wang, J. M., Sun, X. W., Jiao, Z. (2010). Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress. Materials, 3 (12), 5029–5053. doi: https://doi.org/10.3390/ma3125029
  3. How The Magical Windows in Boeing's 787 Dreamliner Work. Available at: https://gizmodo.com/how-the-magical-windows-in-boeings-787-dreamliner-work-5829395
  4. Smart glass for better buildings. Available at: https://www.sageglass.com/en/products
  5. Azens, A., Granqvist, C. (2003). Electrochromic smart windows: energy efficiency and device aspects. Journal of Solid State Electrochemistry, 7 (2), 64–68. doi: https://doi.org/10.1007/s10008-002-0313-4
  6. Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712jss
  7. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  8. Fetcenko, M. A., Ovshinsky, S. R., Reichman, B., Young, K., Fierro, C., Koch, J. et. al. (2007). Recent advances in NiMH battery technology. Journal of Power Sources, 165 (2), 544–551. doi: https://doi.org/10.1016/j.jpowsour.2006.10.036
  9. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
  10. Ge, W., Peng, W., Encinas, A., Ruiz, M. F., Song, S. (2019). Preparation and characterization of flowerlike Al-doped Ni(OH)2 for supercapacitor applications. Chemical Physics, 521, 55–60. doi: https://doi.org/10.1016/j.chemphys.2019.01.022
  11. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  12. Kotok, V. A., Kovalenko, V. L., Zima, A. S., Kirillova, E. A. Burkov, A. A., Kobylinska, N. G. et. al. (2019). Optimization of electrolyte composition for the cathodic template deposition of Ni(OH)2-based electrochromic films on FTO glass. ARPN Journal of Engineering and Applied Sciences, 14 (2), 344–353. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2019/jeas_0119_7562.pdf
  13. Kotok, V., Kovalenko, V. (2018). A study of the effect of cycling modes on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 62–69. doi: https://doi.org/10.15587/1729-4061.2018.150577
  14. Natarajan, C. (1997). Improvement in Electrochromic Stability of Electrodeposited Nickel Hydroxide Thin Film. Journal of The Electrochemical Society, 144 (1), 121. doi: https://doi.org/10.1149/1.1837373
  15. Sonavane, A. C., Inamdar, A. I., Shinde, P. S., Deshmukh, H. P., Patil, R. S., Patil, P. S. (2010). Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds, 489 (2), 667–673. doi: https://doi.org/10.1016/j.jallcom.2009.09.146
  16. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977. Available at: https://pdfs.semanticscholar.org/5628/61836625c1b46d9daeb7bbe73e7d85338519.pdf
  17. Kondalkar, V. V., Patil, P. B., Mane, R. M., Patil, P. S., Choudhury, S., Bhosal, P. N. (2016). Electrochromic Performance of Nickel Oxide Thin Film: Synthesis via Electrodeposition Technique. Macromolecular Symposia, 361 (1), 47–50. doi: https://doi.org/10.1002/masy.201400253
  18. Morisaki, S., Kawakami, K., Baba, N. (1988). Formation of Nickel Oxyhydroxide Thin Films by Electrodepositon and Their Electrochromic Characteristics. Japanese Journal of Applied Physics, 27, 314–318. doi: https://doi.org/10.1143/jjap.27.314
  19. Liu, H.-S., Chang, W.-C., Chou, C.-Y., Pan, B.-C., Chou, Y.-S., Liou, G.-S., Liu, C.-L. (2017). Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-11862-1
  20. Abareshi, A., Haratizadeh, H. (2016). Effect of annealing temperature on optical and electrochromic properties of tungsten oxide thin films. Iranian Journal of Physics Research, 16 (3), 47–54. doi: https://doi.org/10.18869/acadpub.ijpr.16.3.47
  21. Sahu, D. R., Wu, T.-J., Wang, S.-C., Huang, J.-L. (2017). Electrochromic behavior of NiO film prepared by e-beam evaporation. Journal of Science: Advanced Materials and Devices, 2 (2), 225–232. doi: https://doi.org/10.1016/j.jsamd.2017.05.001
  22. Chananonnawathorn, C., Pudwat, S., Horprathum, M., Eiamchai, P., Limnontakul, P., Salawan, C., Aiempanakit, K. (2012). Electrochromic Property Dependent on Oxygen Gas Flow Rate and Films Thickness of Sputtered WO3 Films. Procedia Engineering, 32, 752–758. doi: https://doi.org/10.1016/j.proeng.2012.02.008
  23. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29, 449–454. doi: https://doi.org/10.1023/A:1003493711239
  24. Senthilkumar, S. T., Kalai Selvan, R. (2014). Fabrication and performance studies of a cable-type flexible asymmetric supercapacitor. Physical Chemistry Chemical Physics, 16 (29), 15692. doi: https://doi.org/10.1039/c4cp00955j
  25. Price Performance. Available at: http://www.optitune.com/price-performance.php

Published

2019-04-08

How to Cite

Kotok, V., & Kovalenko, V. (2019). Optimization of the deposition conditions for Ni(OH)2 films for electrochromic elements of “smart” windows. Eastern-European Journal of Enterprise Technologies, 2(5 (98), 35–40. https://doi.org/10.15587/1729-4061.2019.162572

Issue

Section

Applied physics