Sorption of cobalt, chromium and uranium ions on Fe/Ti-pillared montmorillonite

Authors

  • Ігор Володимирович Пилипенко National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-0236-7266
  • Лариса Миколаївна Спасьонова National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7562-7241
  • Ірина Андріївна Ковальчук Institute of Sorption and Problems of NAS Endoecology, Ukraine https://orcid.org/0000-0002-7019-6534
  • Василь Валерійович Веремеєнко National Technical University of Ukraine "Kiev Polytechnic Institute" avenue, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2495-7459

DOI:

https://doi.org/10.15587/1729-4061.2014.26246

Keywords:

pillared montmorillonite, adsorption, polyhydroxocomplex, porous structure, modification, cobalt, chromium, uranium

Abstract

The structural and adsorption properties of montmorillonite pillared with titanium and iron polyhydroxocomplexes are given in the paper. It was found that the composition of the polyhydroxocomplexes significantly affects the properties of the resultant materials. For studying the basic properties of the resultant materials, the X-ray phase analysis, the low-temperature nitrogen adsorption, and adsorption of the metal ions from aqueous solutions were used.

The results of the X-ray phase analysis, with changes in the respective basal reflections, confirm the presence of iron and titanium polyhydroxocomplexes in the interlayer space of the mineral. Synthesized pillared minerals have a well-developed specific surface, micro- and mesoporosity, as confirmed by the low-temperature nitrogen adsorption.

It was found that the pillared montmorillonite shows relatively high adsorption characteristics relatively to chromium and uranium ions. Adsorption on the pillared montmorillonite samples significantly depends on the pH solutions, adsorptive properties and the composition of the polyhydroxocomplexes, which were used for synthesizing adsorbents.

The research results can be useful for developing and synthesizing new types of inorganic ion-exchange materials for extracting cations and anions of various inorganic toxicants from aqueous solutions.

Author Biographies

Ігор Володимирович Пилипенко, National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremogy ave., 37, Kyiv, Ukraine, 03056

Ph.D. student

Chemical Technology of Ceramics and Glass Department

Лариса Миколаївна Спасьонова, National Technical University of Ukraine “Kyiv Polytechnic Institute” Peremogy ave., 37, Kyiv, Ukraine, 03056

Ph.D. in Chemistry, professor assistant

Chemical Technology of Ceramics and Glass Department

Ірина Андріївна Ковальчук, Institute of Sorption and Problems of NAS Endoecology

Ph.D., Senior Researcher 

Василь Валерійович Веремеєнко, National Technical University of Ukraine "Kiev Polytechnic Institute" avenue, 37, Kiev, Ukraine, 03056

Department of Chemical Technology of Ceramics and Glass 

References

  1. Bergaya, F., Theng, B. K. G., Lagaly, G. (2006). Handbook of clay science. London : Elsevier, 1224. doi: 10.1016/S1572-4352(05)01012-3
  2. Pylypenko, I. V. (2014). Granular composite for removal of cobalt and methylene blue ions. Eastern Eur. J. Enterprise Technol., 11, 16–20. doi: 10.15587/1729-4061.2014.22937
  3. Romero, A., Dorado, F., Asencio, I., Garciа, P. B., Valverde, J. L. (2006). Ti-pillared clays: synthesis and general characterization. Clays Clay Miner., 6, 737–747. doi: 10.1346/CCMN.2006.0540608
  4. Lei, G., Ma, J., Guan, X., Song, A., Cui, Y. (2009). Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water Guoyuan. Desalination, 247, 518–529. doi: 10.1016/j.desal.2008.06.026
  5. Mei, J. G., Yu, S. M., Cheng, J. (2004). Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti-PILC employing microwave irradiation. Catal. Commun., 5, 437–440. doi: 10.1016/j.catcom.2004.05.009
  6. Jagtap, N., Ramaswamy, V. (2006). Oxidation of aniline over titania pillared montmorillonite clays. Appl. Clay Sci., 33, 89–98. doi: 10.1016/j.clay.2006.04.001
  7. Na, P., Jia, X., Yuan, B., Li, Y., Na, J., Chen, Y., Wang, L. (2010). Arsenic adsorption on Ti-pillared montmorillonite. J. Chem. Technol. Biotechnol., 85, 708–714. doi: 10.1002/jctb.2360
  8. Masih, D., Izumi Y., Aika K., Seida Y. (2007). Optimization of an iron intercalated montmorillonite preparation for the removal of arsenic at low concentrations. Eng. Life Sci., 1, 52–60. doi: 10.1002/elsc.200620171
  9. Gupta, K., Ghosh, U. C. (2009). Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. Journal of hazardous materials, 161(2), 884-892. doi: 10.1016/j.jhazmat.2008.04.034
  10. Dou, B., Dupont V., Pan W., Chen B. (2011). Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. Chem. Eng. J., 166, 631–638. doi: 10.1016/j.cej.2010.11.035
  11. Cardoso, V. D. A., Souza, A. G. D., Sartoratto, P. P., Nunes, L. M. (2004). The ionic exchange process of cobalt, nickel and copper (II) in alkaline and acid-layered titanates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248(1), 145-149. doi: 10.1016/j.colsurfa.2004.09.012
  12. Abou-Mesalam, M. M. (2004). Applications of inorganic ion exchangers: II—adsorption of some heavy metal ions from their aqueous waste solution using synthetic iron (III) titanate. Adsorption, 10(1), 87–92. doi: 10.1023/B:ADSO.0000024038.32712.18
  13. Ahmed, M. A., El-Katori, E. E., Gharni, Z. H. (2013). Photocatalytic degradation of methylene blue dye using Fe< sub> 2 O< sub> 3/TiO< sub> 2 nanoparticles prepared by sol–gel method. Journal of Alloys and Compounds, 553, 19-29. doi: 10.1016/j.jallcom.2012.10.038
  14. Li, X., Li, G., Qu, Z., Zhang, D., Liu, S. (2011). The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene. Appl. Catal., A: General., 2, 82–87. doi: 10.1016/j.apcata.2011.03.020
  15. Ramesh, A., Hasegawa, H., Maki, T., Ueda, K. (2007). Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep. Purif. Technol., 1, 90–100. doi: 10.1016/j.seppur.2007.01.025
  16. Rouquerol, F. (2014). Adsorption by powders and porous solids principles, methodology and applications. London: Elsevier, 626. doi: 10.1016/B978-0-08-097035-6.00012-7
  17. Valverde, J. L., Romero, A., Romero, R., Garcia, P. B., Sanchez, M. L., Asencio, I. (2005). Preparation and characterization of Fe-pilcs. Influence of the synthesis parameters. Clays Clay Miner., 6, 613–621. doi: 10.1346/CCMN.2005.0530607
  18. Yuan, P., Yin, X., He, H., Yang, D., Wang, L., Zhu, J. (2006). Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous Mesoporous Mater., 93, 240–247. doi: 10.1016/j.micromeso.2006.03.002
  19. Amphlett, C. B., Mcdonald, L. A., Redman, M. J. (1958). Synthetic inorganic ion-exchange materials. II Hydrous zirconium oxide and other oxides. J. Inorg. Nucl. Chem., 6, 236–245. doi: 10.1016/0022-1902(58)80153-0
  20. Li, D., Scala, A. A., Ma, Y. H. (1996). Adsorption and characteristics of base-treated pillared clays. Adsorption., 2, 227–235. doi: 10.1007/BF00128304
  21. Kornilovych, B. Yu., Sorokin, O. G., Pavlenko, V. M., Koshyk, Y. J. (2011). Environmental technology in uranium mining and processing industry. Kiev: Norma, 156.
  22. Chen, L., He, B. Y., He, S., Wang, T. J., Su, C. L., Jin, Y. (2012). Fe–Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technol., 227, 3–8. doi: 10.1016/j.powtec.2011.11.030

Published

2014-08-08

How to Cite

Пилипенко, І. В., Спасьонова, Л. М., Ковальчук, І. А., & Веремеєнко, В. В. (2014). Sorption of cobalt, chromium and uranium ions on Fe/Ti-pillared montmorillonite. Eastern-European Journal of Enterprise Technologies, 4(6(70), 57–61. https://doi.org/10.15587/1729-4061.2014.26246

Issue

Section

Technology organic and inorganic substances