Approbation of a structural approach mode for optimization producing coatings, increases the wear resistance of the turbine blades

Authors

  • Олег Валентинович Соболь National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-5156-7371
  • Виталий Владимирович Дмитрик National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-6266-6081
  • Николай Андреевич Погребной National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-1689-3830
  • Наталия Владимировна Пинчук National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0954-2266
  • Андрей Александрович Мейлехов National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.39456

Keywords:

blade turbine, node friction-slip, coating, texture, crystallite size, hardness, wear resistance

Abstract

A complex analysis of the benefits of using a vacuum-plasma coatings to increase wear steam turbine components. The possibility of using a structured approach to surface engineering to monitor the efficiency used in the preparation of coatings, physical and technological parameters. As express structural parameters control the functional properties of the nitride coating with an fcc crystal lattice is proposed to use the degree of texturing to the [111] axis perpendicular to the growth surface, and the average size of the crystallites. It is shown that the use of high-voltage pulse stimulation technology to streamline the formation mononitride coatings, as well as multi-element nitrides highentropy alloys can increase the hardness of coatings by more than 1.5 times, and the abrasion resistance increased more than 1.7 times, compared with coatings currently used to protect the blades from wear and friction-slip gas turbine units.

Author Biographies

Олег Валентинович Соболь, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

Professor, Doctor of Physical and Mathematical Sciences, Head of Department

Department of Materials Science

Виталий Владимирович Дмитрик, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

Professor, Doctor of Technical Sciences, Head of Department

Department of welding

Николай Андреевич Погребной, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

Professor of NTU "KPI", Candidate of technical science, Dean of the Faculty of MT

Department of Materials Science

Наталия Владимировна Пинчук, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

PhD student

Department of Materials Science

Андрей Александрович Мейлехов, National Technical University "Kharkiv Polytechnic Institute" str. Frunze, 21, Kharkov, Ukraine, 61002

PhD student

Department of Materials Science

References

  1. Pryakhin, V. V., Povarov, O. A., Ryzhenkov, V. A. (1984). Problemy erozii turbinnykh rabochikh lopatok. Teploenergetika, 10, 25–31.
  2. Kartmazov, G. N., Lukirskiy, Yu. V., Kirik , G. V., Marinin, V. G., Polyakov, Yu. I., Deyneka, A. A. (2012). Korrozionno-erozionnostoykie pokrytiya dlya rabochikh lopatok parovykh turbin. Nauka ta іnnovatsії, 8 (3), 17–22.
  3. Selivanov, K. S., Smyslov, A. M., Petukhov, A. N. (2011). Issledovaniya svoystv vakuumno-plazmennykh pokrytiy metodom sklerometrirovaniya na ustanovke CSM Scratch Test. Tekhnologiya mashinostroeniya. Ufa: Vestnik UGATU, 15/4 (44), 230–236.
  4. Mingazhev, A. D., Novikov, A. V., Krioni, N. K., Bekishev, R. R. (2014). Zashchitnoe pokrytie dlya lopatok parovykh turbin. Elektronnyy nauchnyy zhurnal «Neftegazovoe delo», 4, 257–278.
  5. Mukhin, V. S., Smyslov, A. M. (2009). Inzheneriya poverkhnosti detaley mashin. Vestnik UGATU. Mashinostroenie, 12/4 (33), 106–112.
  6. Novikov, I. I., Filippov, G. A., Mordukhovich, A. M., Krivda, O. A., Shalobasov, I. A., Ivnitskiy, B. Ya. (1989). Povyshenie erozionnoy stoykosti staley, primenyaemykh v energomashinostroenii. Energomashinostroenie, 12, 15–17.
  7. Pohmurskiy, V. I., Matsevitiy, V. M., Kalahan, O. S., Kazak, I. B., Vakulenko, K. V., Lyashok, S. V. (2010). Rozrobka ta doslidzhennya pokrittiv dlya zahistu vid freting-koroziyi. Problemy mashinostreniya, 13 (2), 61–67.
  8. Bushuev, M. N. (1966). Tekhnologiya proizvodstva turbin. Mashinostroenie, 416.
  9. Muboyadzhan, S. A., Lesnikov, V. P., Kuznetsov, V. P. (2008). Kompleksnye zashchitnye pokrytiya turbinnykh lopatok aviatsionnykh GDT. Ekaterinburg: Izd-vo «Kvist», 208.
  10. Getsov, L. B. (2010). Materialy i prochnost' detaley gazovykh turbin. V dvukh knigakh. Rybinsk: OOO «Izdatel'skiy dom «Gazoturbinnye tekhnologii», 1, 612.
  11. Materialy i prochnost' oborudovaniya TES: ucheb. posobie (2008). SPb.: Izd-vo Politekhn. Universiteta, 610.
  12. Budilov, V. V., Mukhin, V. S., Shekhman, S. R. (2008). Nanotekhnologii obrabotki poverkhnosti detaley na osnove vakuumnykh ionno-plazmennykh metodov: Fizicheskie osnovy i tekhnicheskie resheniya. Moscow: Nauka, 194.
  13. Kuznetsov, N. D., Tseytlin, V. I., Volkov, V. I. (1993). Tekhnologicheskie metody povysheniya nadezhnosti detaley mashin. Moscow: Mashinostroenie, 304.
  14. Sulima, A. M., Shulov, V. A., Yagodkin, Yu. D. (1988). Poverkhnostnyy sloy i ekspluatatsionnye svoystva detaley mashin. Moscow: Mashinostroenie, 239.
  15. Gonserovskiy, F. G. (1998). Uprochnenie i remont stal'nykh paroturbinnykh rabochikh lopatok posle erozionnogo iznosa. Elektricheskie stantsii, 8, 37–41.
  16. Solonina, O. P., Glazunov, S. G. (1976). Zharoprochnye titanovye splavy. Moscow: Metallurgiya, 447.
  17. Sobol', O. V., Azarenkov, N. A., Pogrebnyak, A. D., Beresnev, V. M. (2011). Inzheneriya vakuumno-plazmennykh pokrytiy. Kharkiv: KhNU imeni V. N. Karazina, 344.
  18. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Krapivka, N. A., Stolbovoi, V. A., Serdyuk, I. V., Fil’chikov, V. E. (2012). Reproducibility of the single-phase structural state of the multielement high-nb entropy Ti–V–Zr–Nb–Hf system and related superhard nitrides formed by the vacuum-arc method. Technical Physics Letters, 38 (7), 616–619. doi: 10.1134/s1063785012070127
  19. Sobol’, O. V., Andreev, A. A., Grigoriev, S. N., Gorban’, V. F., Volosova, M. A., Aleshin, S. V., Stolbovoi, V. A. (2012). Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings. Metal Science and Heat Treatment, 54 (3-4), 195–203. doi: 10.1007/s11041-012-9481-8
  20. Rutherford, K. L., Hutchings, I. M. (1996). A Micro-Abrasive Wear Test, with Particular Application to Coated Systems. Surface & Coatings Technology, 79 (1-3), 231–239. doi: 10.1016/0257-8972(95)02461-1
  21. Sue, J. A., Troue, H. H. (1987). Effect of Crystallographic Orientation on Erosion Characteristics of ARC Evaporation Titanium Nitride Coating. Surface and Coatings Technology, 33, 169–181. doi: 10.1016/0257-8972(87)90186-1

Published

2015-04-17

How to Cite

Соболь, О. В., Дмитрик, В. В., Погребной, Н. А., Пинчук, Н. В., & Мейлехов, А. А. (2015). Approbation of a structural approach mode for optimization producing coatings, increases the wear resistance of the turbine blades. Eastern-European Journal of Enterprise Technologies, 2(5(74), 53–59. https://doi.org/10.15587/1729-4061.2015.39456