Detection of methanol vapor by surface plasmon resonance method

Authors

  • Глеб Вячеславович Дорожинский V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41, Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0002-7881-2493
  • Михаил Викторович Лобанов V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41, Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0002-0829-271X
  • Владимир Петрович Маслов V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41, Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0001-7795-6156

DOI:

https://doi.org/10.15587/1729-4061.2015.47079

Keywords:

detection device, surface plasmon resonance, methanol, maximum allowable concentration, sensor element, environmental safety

Abstract

The possibility of using the device based on the physical phenomenon of surface plasmon resonance to detect the methanol vapor in the air of the working premise was considered in the paper.

Therefore, the PPR method, which has high sensitivity, speed and ability to use small samples of investigated gaseous substance is of interest.

Experimental studies have confirmed the possibility of using the phenomenon of surface plasmon resonance to detect methanol vapor in accordance with the requirements of the MAC (5 mg/m3, which corresponds approximately to 0.37 vol%). Virtually linear dependence for two sections was determined:

a. at the methanol concentration in the air from 0.05 to 1vol%, which covers the MAC values for the given substance. An analytical description of the dependence Δθ = 0,1068 C+0.0568, where Δθ is the difference in the SPR angle minima, C is the methanol concentration, and the approximation accuracy is R2=0,992 was found.

b. at the methanol concentration in the air from 1 to 40 vol%, a graph of the concentration dependence is approximated by the virtually linear dependence Δθ = 0,0128 C+0.121 with the approximation accuracy of R2=0,998.

Author Biographies

Глеб Вячеславович Дорожинский, V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41, Kyiv, Ukraine, 03028

Senior Researcher

Department of Physics and technological bases of sensory materials

Михаил Викторович Лобанов, V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41, Kyiv, Ukraine, 03028

Engineer of I category

Department of Physics and technological bases of sensory materials

Владимир Петрович Маслов, V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Prosp. Nauki 41, Kyiv, Ukraine, 03028

Head of Department, Senior Researcher, Dr. Sc. (Thechn), professor of National technical university of Ukraine “Kyiv polytechnic institute”

Department of Physics and technological bases of sensory materials

References

  1. Cherkes, A. I., Luganskii, N. I., Rodionov, P. V. (1964). Rukovodstvo po toksikologii otravliaiushchih veshchestv. K.: Zdorov'e, 464.
  2. Jorgenson, S. E. (1990). Modeling in Ecotoxicology. Amsterdam, Oxford, New York, Tokyo: Elsevier, 353. ISBN: 978-0-444-53628-0.
  3. Olah, G. A., Goeppert, A., Prakash, G. S. (2011). Beyond Oil and Gas: The Methanol Economy. John Wiley & Sons, 350.
  4. Patil, Sh. B., More, M. A., Patil, A. V. (2013). Molybdenum Doped SnO2 Thin Films as a Methanol Vapor Sensor. Sensors & Transducers Journal, Vol. 149, № 2, 43–49.
  5. GOST 12.1.005-88. Obshchie sanitarno-gigienicheskie trebovaniia k vozduhu rabochei zony. (2006). Introduced 1989-01-01. M.: Standartinform, 50.
  6. Peacock, A. J., Naeije, R., Rubin, L. J. (2011). Pulmonary Circulation: Diseases and Their Treatment, Third Edition. CRC Press, 728.
  7. NPCS Board of Consultants & Engineers. (2010). Industrial Alcohol Technology Handbook. Asia Pacific Business Press Inc., 552.
  8. Poriev, V. A., Dashkovskyi, O. A., Myndiuk, Ya. L. (2009). Analitychni ekolohichni prylady ta systemy. Vinnytsia: UNIVERSUM-Vinnytsia, 267.
  9. Haug, M., Schierbaum, K. D., Gauglitz, G., Göpel, W. (1993, March). Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetric, and capacitance sensors. Sensors and Actuators B: Chemical, Vol. 11, № 1-3, 383–391. doi:10.1016/0925-4005(93)85278-i
  10. Löfås, S., Malmqvist, M., Rönnberg, I., Stenberg, E., Liedberg, B., Lundström, I. (1991, August). Bioanalysis with surface plasmon resonance. Sensors and Actuators B: Chemical, Vol. 5, № 1-4, 79–84. doi:10.1016/0925-4005(91)80224-8
  11. Biekietov, V. E., Yevtukhova, H. P., Kovalenko, Yu. L. (2011). Ekolohiia i okhorona navkolyshnoho seredovyshcha. Kharkiv: KhNAMH, 43.
  12. Ushenin, Yu. V., Hristosenko, R. V., Samoilov, A. V., Dorozhinskii, G. V., Kaganovich, E. B., Manoilov, E. G., Snopok, B. A. (2012). Optoelektronnye sensornye struktury na osnove plenok poristogo oksida aliuminiia, poluchennyh impul'snym lazernym osazhdeniem. Optoelektronika i poluprovodnikovaia tehnika, № 47, 40–45.
  13. Gruppa spektroskopii poverhnostnogo plazmonnogo rezonansa IFP NANU. (2011). Spektrometr poverhnostnogo plazmonnogo rezonansa «PLAZMON 6». Available: http://plasmon.org.ua/PRODUCTS/PLASMON6.HTM
  14. Gridina, N., Dorozinsky, G., Khristosenko, R., Maslov, V., Samoylov, A., Ushenin, Yu., Shirshov, Yu. (2013). Surface plasmon resonance biosensor. Sensors & Transducers Journal, Vol. 149, № 2, 60–68.

Published

2015-08-22

How to Cite

Дорожинский, Г. В., Лобанов, М. В., & Маслов, В. П. (2015). Detection of methanol vapor by surface plasmon resonance method. Eastern-European Journal of Enterprise Technologies, 4(5(76), 4–7. https://doi.org/10.15587/1729-4061.2015.47079