Investigation of the process of crushing solid materials in the centrifugal disintegrators

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.71983

Keywords:

crushing, quartzites, size, centrifugal disintegrator, rotor, power costs, mathematical model of material destruction process via stroke in the field of centrifugal force

Abstract

The paper represents the results of investigation of magnetite quartzite centrifugal disintegrators crushing. It is demonstrated that when crushing quartzites of ingoing size 100 mm, it is possible to obtain crushed product size – 10 mm, in so doing product classes – 10 mm depends on the disintegrator rotor rotation frequency. It is shown that in crushed products of the centrifugal disintegrator of CD-50 type there are more classes minus 10, 5, 1 and 0.074 mm by 30, 42, 32, 13,5 % respectively, than in crushed products of KMD-2200 cone-type crusher. Herewith, it was established that iron content in CD-50 crushed products is 3.3 % higher, that in KMD-2200 ones.

The obtained empirical dependencies of material destruction process via stroke in the field of centrifugal forces can be applied in performance prediction of material centrifugal disintegrators crushing.

The final formula for calculating the material escape speed out of the accelerated disintegrator rotor, which provides required destruction of material, was obtained by means of classical hypothesis method application. Namely, the required speed of material escape out of the operating cylinder of centrifugal disintegrator is linear to specified material reduction degree and value of admissible (critical) stress of the given material destruction, and inversely proportional to Sin of meeting angle of material with bumper plates and value of material acoustic stiffness.

Carried out empirical and theoretical investigations showed the advantages of magnetite quartzite crushing in centrifugal disintegrator before comminution in cone crushers, which makes the use of disintegrators in schemes of preparation of ore for further concentration well-grounded.

Author Biographies

Mykola Sokur, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39614

Doctor of Technical Science, Professor, Corresponding Member of the Academy of Mining Sciences

Department of Marketing 

Volodymyr Biletskyi, Poltava Yurii Kondratiuk National Technical University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

Doctor of Technical Science, Professor, Head of Department

Department of Oil and Gas Industry

Lidiia Sokur, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39614

PhD, Associate Professor

Department of Transport Technologies

Denys Bozhyk, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39614

Applicant

Department of Marketing

Ivan Sokur, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39614

Researcher

Department of Marketing

References

  1. Andreev, S. E., Perov, V. A., Zverevich, V. V. (1980). Drobleniye, izmelchenie i hrochotchenie polesnych iskopaemych [Crushing, grinding and screening of minerals]. Moscow: Nedra, 415.
  2. Wills, B. A. (2006). Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 7th ed. Amsterdam ; Boston, MA, 157.
  3. Sokur, N. I., Poturaev, V. N., Babets, E. K. (2000). Drobleniye i izmelchenie rud [Crushing and grinding of ore]. Kryvyj Rig: Vezha, 290.
  4. Jankovic, A., Dundar, H., Mehta R. (2010). Relationships between comminution energy and product size for a magnetite ore. The Journal of The Southern African Institute of Mining and Metallurgy, 110, 141–146. Available at: http://www.scielo.org.za/pdf/jsaimm/v110n3/07.pdf
  5. Refahi, A., Aghazadeh Mohandesi, J., Rezai B. (2009). Comparison between bond crushing energy and fracture energy of rocks in a jaw crusher using numerical simulation. Journal of the Southern African Institute of Mining and Metallurgy, 109, 709–717. Available at: http://www.scielo.org.za/pdf/jsaimm/v109n12/03.pdf
  6. Whittles, D. N., Kingman, S., Lowndes, I., Jackson, K. (2006). Laboratory and numerical investigation into the characteristics of rock fragmentation. Minerals Engineering, 19 (14), 1418–1429. doi: 10.1016/j.mineng.2006.02.004
  7. Evseev, V. D. (2011). Priroda effekta Rebindera pri razrushenii gornykh porod [Nature Rehbinder effect in rock failure]. Neftyanoe khozyaystvo, 11, 38–40.
  8. Akande, S., Adebayo, B., Akande, J. M. (2013). Comparative Analysis of Grindability of Iron‐ ore and Granite. Journal of Mining World Express, 2 (3), 55–62.
  9. Zuo, W., Shi, F., Manlapig, E. (2015). The effect of metalliferous grains on electrical comminution of ore. In: International Mineral Processing Congress, Santiago, Chile, 2, 106–115.
  10. Zuo, W., Shi, F. (2015). A t10-based method for evaluation of ore pre-weakening and energy reduction. Minerals Engineering, 79, 212–219. doi: 10.1016/j.mineng.2015.06.005
  11. Razavian, S. M., Rezai, B., Irannajad, M. (2015). Finite element method based simulation of electrical breakage of iron-phosphate ore. Physicochemical Problems of Mineral Processing, 51(1), 137−150.
  12. McKen, A., Chiasson, G.; Allan, M. J., Major, K., Flintoff, B. C., Klein, B., Mular, A. L. (Eds.) (2006). Small-scale continuous SAG testing using the MacPherson autogenous grindability test. Proceedings international autogenous and semiautogenous grinding technology, 4, 299–314.
  13. Verret, F. O., Chiasson, G., Mcken, D. A. (2011). Sag Mill Testing – an overview ofhe test procedures available to characterize ore grindability. SGS Minerals Services, 10.
  14. Sokur, M. I., Sokur, I. M. (2013). Innovatsiina tekhnolohiia droblennia mahnetytovykh kvartsytiv v poli vidtsentrovykh syl ta yii vplyv na efektyvnist rudopidhotovky [Innovative crushing magnetite quartzites in the field of centrifugal forces and its impact on the effectiveness ore pretreatment]. Visnyk Kharkivskoho politekhnichnoho instytutu. Seriia: Khimiia, khimichna tekhnolohiia ta ekolohiia, 57, 115–120.
  15. Egurnov, A. I., Ravishin, V. P. (1998). Povysheniye effektivnosti protsessov izmelcheniya i klassifikatsii na obogatitelnoy fabrike InGOKa [Improving the efficiency of grinding and classification processes at the InGOK’sconcentrator]. Teoriya i praktika protsessov obogashcheniya, razdeleniya i smesheniya, 45–48.
  16. Biletsky, V. S. (2000). Zastosuvannia klasychnoho metodu hipotez u zbahachenni korysnykh kopalyn [Application classical method of hypotheses in mineral dressing]. Zbahachennia korysnykh kopalyn, 10 (51), 17–26.
  17. Basics in Minerals Processing (2015). Metso Corporation, 354. Available at: http://www.metso.com/miningandconstruction/MaTobox7.nsf/DocsByID/EAE6CA3B8E216295C2257E4B003FBBA6/$File/Basics-in-minerals-processing.pdf
  18. Gorobets, L. Zh., Bovenko, V. N., Pryadko, N. S. (2013). Akusticheskii metod issledovanija processa izmelchenija [The acoustic method for studying the process of grinding]. Ore Processing, 3, 18–24.

Downloads

Published

2016-06-30

How to Cite

Sokur, M., Biletskyi, V., Sokur, L., Bozhyk, D., & Sokur, I. (2016). Investigation of the process of crushing solid materials in the centrifugal disintegrators. Eastern-European Journal of Enterprise Technologies, 3(7(81), 34–40. https://doi.org/10.15587/1729-4061.2016.71983

Issue

Section

Applied mechanics